FINAL REPORT
Transient Faults in Computer Systems
NASA Grant No. NSG-1442

Gerald M. Masson
Principal Investigator

4l

"o
i

wm'l\ m
s Ll ol

g

i

FINAL REPORT PRty
Transient Faults in Computer Systems
NASA Grant No. NSG-1442

Gerald M. Masson
Principal Investigator
Department of Computer Science
The Johns Hopkins University
Baltimore, Maryland 21218-2694
Phone: (410) 516-7013
FAX: (410) 516-6134
Email: masson@cs.jhu.edu

Summary

We have developed by means of support from NASA Grant N5G-1442 a novel and powerful
technique particularly appropriate for the detection of errors caused by transient faults in computer
systems. The technique can be implemented in either software or hardware; the research conducted
thus far primarily has considered software implementations. The error detection technique we have
developed has the distinct advantage of having provably complete coverage of all errors caused by
transient faults that affect the output produced by the execution of a program. In other words, the ‘
technique does not have to be tuned to a particular error model to enhance error coverage. Also,
the correctness of the technique can be formally verified. -

When implemented in software, this new technique uses time and software redundancy and can

be outlined as follows. In the initial phase, a program is run to solve a problem and store the -

result. In addition, this program leaves behind a trail of data which we call a certification tratl In
the second phase, another program is run which solves the original problem again. This program,
however, has access to the certification trail left by the first program. Because of the availability
of the certification trail, the second phase can be performed by a less complex program and can
execute more quickly. In the final phase, the two results are compared and if they agree the results
are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is
that the second program must always generate either an error indication or a correct output even
when the certification trail it receives from the first program is incorrect. We have formalized the
certification trail approach to fault tolerance and have illustrated numerous realizations of it for
well-know and important problems. We have rigorously proven the correctness of the technique
for certain applications. We have shown cases in which the second phase can be run concurrently
with the first and act as a real-time monitor. We have compared the certification trail approach
to other approaches to error detection to demonstrate the significant conceptual and performance
advantages. -
This research has developed the foundation for an effective, low-overhead, software-based cer-
tification trail approach to real-time error detection resulting from transient fault phenomena. It
would be particularly appropriate at this time to examine the technique further in the context
of important and timely applications. For example, transient error phenomena caused by ioniz-
ing radiations in space or high-altitude avionics environments stand as a major obstacle to many

1

I

|3

i

applications of high performance microelectronics. The research reported in the following would
provide a framework for the development of “radiation-hardened software” that would permit the
utilization of high performance microelectronics in space and high-altitude avionics applications in
an efficient and cost effective manner.

In the following, seven papers are provided which together characterize the current state of the
most recent research conducted with support from NASA Grant NSG-1442:

1.

Certification of Computational Results, Gregory F. Sullivan, Dwight S. Wilson, Gerald M.

Masson.

. Ezperimental Evaluation of the Certification-Trail Method, Gregory F. Sullivan, Dwight S.

Wilson, Gerald M. Masson, Mamoru Itoh, Warren W. Smith, Jonathan §. Kay.

Certification Trails and Software Design for Testability, Gregory F. Sullivan, Dwight S. Wil-
son, Gerald M. Masson.

Ezperimental Evaluation of Certification Trails using Abstract Data Type Validation, Dwight
S. Wilson, Gregory F. Sullivan, Gerald M. Masson.

United States Patent, Method and Apparatus for Fault Tolerance, Patent No. 5,243,607, Sept.
7, 1993, United States Patent Office.

Using Certification Trails to Achieve Software Fault Tolerance, Gregory F. Sullivan, Gerald
M. Masson.

Certification Trails for Data Structures, Gregory F. Sullivan, Gerald M. Masson.

il

KLl

B

Nii i

First Execution

Certification Trail

Duplicate Compare

or Error

Second Execution

Figure 1: Certification trail method.

the software in addition to those caused by transient hardware faults and utilizes both time and
software redundancy. Errors caused by software faults are detected whenever the independently
written programs do not generate coincident errors.

A significant drawback to the above approaches is the overhead required. Either extra time
is required to run the algorithms serially on a single processor or extra hardware is required to
run them in parallel. The technique we will describe is designed to achieve similar types of error
detection capabilities while reducing the required resource overhead. The central idea, as illustrated
in Figure 1, is to modify the first algorithm so that it leaves behind a trail of data which we call a
certification trail. This data is chosen to allow the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of the two executions are
compared and are considered correct only if they agree. Note, however, that we must be careful in
defining this method or else its error detection capability might be reduced by the introduction of
data dependency between the two algorithm executions. For example, suppose the first algorithm
execution contains an error which causes an incorrect output and an incorrect trail of data to be
generated. Further suppose that no error occurs during the execution of the second algorithm. It
appears possible that the execution of the second algorithm might use the incorrect trail to generate
an incorrect output which matches the incorrect output produced by the first algorithm. Intuitively,
we can regard the two executions as “adversaries.” The second execution must guard against an
incorrect certification trail “fooling” it into producing an incorrect output. The definitions we give
below exclude this possibility. They demand that the second execution either generates a correct
answer or signals the fact that an error has been detected in the certification trail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the
domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of
solutions) for the problem. We say an algorithm A solves a problem P iff for all d € D when d is
input to A then an s € S is output such that (d,s) € P.

PRECEDING PAGE BLANK NOT FILMED

l. ik

il

Il

=
==
famary

Definition 2.2 Let P : D — S be a problem. A solution to this problem using a certification
trail consists of two functions F; and F; with the following domains and ranges F; : D - Sx T
and F2: D x T — S U {error}. T is the set of certification trails. The functions must satisfy the
following two properties:

(1) for all d € D there exists s € S and there exists ¢t € T such that
Fy(d) = (s,t) and F;(d,t) = s and (d,s) € P
(2)foralde D and forallte T
either (F3(d,t) = s and (d, s) € P) or F3(d,t) = error.

We also require that F} and F; be implemented so that they map elements not in their respective
domains to the error symbol. The definitions above assure that the error detection capability of
the certification trail approach is comparable to that obtained with the simple time redundancy
approach discussed earlier. (That is, if transient hardware faults occur during only one of the
executions then either an error will be detected or the output will be correct.) It should be further
noted, however, that the examples to be considered will indicate that this approach can also save
overall execution time.

The certification trail approach also allows for the detection of faults in software. As in 2-
version programming, separate teams can write the algorithms for the first and second executions.
Note that the specification now must include precise information describing the generation and
use of the certification trail. Because of the additional data available to the second execution,
the specifications of the two phases can be very different; similarly, the two algorithms used to
implement the phases can be very different. (This will be illustrated in the convex hull example to
be considered later.) Alternatively, the two algorithms can be very similar, differing only in data
structure manipulations. (This will be illustrated in the shortest path example to be considered
later.) When significantly different algorithms are used, the probability that both algorithms will
contain or be affected by faults which generate matching errors should be reduced. When very
similar algorithms are used it is sometimes possible to save programming effort by sharing program
code. For example, the code implementing any data structures needed by the program might be
different, while the code that uses the data structure operations would be the same. This approach
is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the
ability to detect errors in the software it does not change the ability to detect transient hardware
errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps
even probable) that the majority of software errors will be in the data structure implementation.
Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-
ever, it is clearly possible to implement the method with assistance from dedicated hardware. It
is also possible to generalize the basic idea we have suggested. We discuss some of these gener-
alizations in a later section. Finally, we note that a wide variety of approaches to software fault
tolerance have been proposed and we contrast our method to the most closely related ideas in a
later section.

In the following two sections we illustrate the application of certification trails to three well-
known and significant problems in computer science: the convex hull problem, sorting, and the
shortest path problem. It should be stressed that the certification trail is not limited to these
problems. Rather, these algorithms have been selected for illustrative purposes.

/|
il

i

418

b |

ni
L.

g

Il

i

IS

[
fin

1

g4

3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail
solution is based on a solution due to Graham [13] called Graham’s Scan. For basic definitions in
computational geometry see the text of Preparata and Shamos [20]. This text also illustrates some
statistical applications of convex hull computations. For simplicity in the following discussion we
will assume the points are in so called general position, i.e., no three points are co-linear. It is not
difficult to remove this restriction.

Definition 3.1 The convezr hull of a set of N points, S, in the Euclidean plane is defined as the
smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a
subset of the points in S. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-
ion. Sometimes it is necessary for the algorithm to “backup” the construction by throwing some
vertices out and then continuing. The first step of the algorithm selects the point with minimum
x-coordinate (using minimum y-coordinate to break ties), and calls it p;. For each other point ¢
in § we compute the slope of the line p,g. Sort the points of § (except for p,) by this slope (since
the points are in general position, the slopes are distinct). Number these vertices ps,p3,...,pn-
It is not hard to show that after these three steps the points when taken in order, py,pa,...,Pn,
form a simple polygon; although this polygon might not be convex. It is possible to think of the
algorithm as removing points from this simple polygon until it becomes convex. This code below
performs this by “walking” through the vertices in order. The main FOR loop iteration adds points
to the polygon under construction. After a point is added, the inner WHILE loop checks the angle
formed by the addition of this point. (Note: We measure angles as follows: Given the three points
gm-1,4qm, Pk We measure the angle from ¢n_1gm t0 gmpP: in the clockwise direction.) If the angle
is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding
point on the polygon) is removed. Note that this will change the preceding angle, which may
now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is
encountered. Figure 2 illustrates the construction of a convex hull using this algorithm. from the
hull.

When the main FOR loop is complete the convex hull has been constructed.

Algorithm CONVEXHULL(S)
Input: Set of points, S, in R?
Output: Counterclockwise sequence of points in R? which define convex hull of §
1 Let p; be the point with the smallest z coordinate (and smallest y to break ties)
2 For each point p (except p,) calculate the slope of the line through p, and p
3 Sort the points (except p;) from the smallest slope to the largest.
Call them pg,...,pn
4 qu:=p1; @:=p; 3:=p3; m=3
5 FORk=4ton DO
6 WHILE the angle formed by ¢m—1,qm, Pk is > 180 degrees DO
7
8

m:=m-1
END WHILE
9 m:=m+1
10 gm:=p
11 END FOR

12 FOR i = 1 to m DO, OUTPUT(¢;) END FOR

4

=2

[
| 1 il

NN

RTII VR 1§

Wi

Figure 2: Convex hull example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property
that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in § containing the eliminated point.

Theorem 3.2 Let p, a, b, and ¢, be points in the plane such that no three are co-linear, p has the
smallest z-coordinate of the four points (and the smaller y-coordinate if another other point has the
same z-coordinate) slope(pa) < slope(pb) < slope(pc). If the angle abc is obtuse (measured in the
clockwise direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays
pa and pe. Note that the line segments pa and pe are in the half plain z > p., and in at least one
case the inequality is strict, since no three points are co-linear. This implies that the angle apc (in
the clockwise direction) must be greater than 180 degrees. Since the angle abc is also obtuse, both
p and b must be on the same side of line @. Therefore, b is inside the triangle pac. |

Corollary 3.3 During ezecution of CONVEXHULL, if, after adding p:, the angle formed by
9m-1,qm, P is obtuse (measured in the clockwise direction), then g, is contained in the triangle
P1yqm-1, Pk-

Proof: slope(Pigm_1) < slope(P1gm) < slope(pipr). B

o In the first execution the code CONVEXHULL is used. The certification trail is generated by
- adding an output statement within the WHILE loop. Specifically, if an angle greater than 180
degrees is found in the WHILE loop test then the 4-tuple consisting of gm,gm-1,P1, P& is output to
the certification trail. The table below shows the 4-tuples of points that would be output by the
=~ algorithm when run on the example in Figure 2. The points in the table are given the same names
as in Figure 2. The final convex hull points ¢;,...,qm are also output to the certification trail.
Finally, the trail output does not consist of the actual points in R?. Instead, it consists of indices
- to the original input data. This means if the original data consists of sy, 33, ..., 3, then rather than
output the element in R? corresponding to s; the number i is output. If point coordinates were
output instead of these indices, the second execution would have to verify that the points on the
- trail are members of S.

Point not on convex hull Three surrounding points

P PP, P2
Ps Pe; P1, P4
Pz Ps, P1, Pe

...‘,,.
kil

' e
I i |4

Second execution: Let the certification trail consist of a set of 4-tuples, (21, 81,44, ¢1), (z3,03,52,¢3),
ey (zr,a,,b,,¢,) followed by the supposed convex hull, ¢;,¢3,...,gm- The code for CONVEX-
HULL is not used in this execution. Indeed, the algorithm performed is dramatically different than
CONVEXHULL. '

It consists of five checks on the trail data.

i. That there is a one to one correspondence between the input points and the points in
{:1,...,:,}U{ql,...,qm}.

ii. That for i€ {1,...,r}, a;, b;, and ¢; are among the input points.
ili. Forie€ {1,...,r} that z; lies within the triangle defined by a;,b;, and ;.

iv. That for each triple of counterclockwise consecutive points on the supposed convex hull the
angle formed by the points is acute.

&l

v. That there is a unique point among the points on the supposed convex hull which is a locally
maximal point. We say a point g on the hull is a local mazimum point if its predecessor in the
counterclockwise ordering has a strictly smaller y coordinate and its successor in the ordering
has a smaller or equal y coordinate.

1

If any of these checks fail then execution halts and “error” is output. As mentioned above, the
trail data actually consists of indices into the input data. This does not unduly complicate the
checks above; in fact it makes it easier to verify the first and second conditions.

Time complexity: In the first execution the sorting of the input points takes O(nlog(n)) time
where n is the number of input points. One can show that this cost dominates and the overall
complexity is O(nlog(n)).

It is possible to implement the second execution so that all five checks are done in O(n) time.
Because indices into the input data are used, the first condition can be checked by verifying that
each index is used exactly once, and that all indices are between 1 and N. The second condition
may checked simply by verifying that each index is between 1 and N. Checking that a point lies

=
=]

g

1l

i

ey

I ¥

I

i

0!

i

it

within a triangle is a geometric calculation that can be done in constant time. Checking that the
angle formed by three points is acute requires only constant time. The third and fourth checks can
be done in O(n) because the certification trail contains indices into the input data as described
above. The uniqueness of the “local maximum” requires only a constant time calculation at each
point, so it may checked in linear time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithms above constitute a certification trail solution for the convex
hull problem. Although the definition is phrased in terms of functions, not algorithms, we can
simply define the functions Fy(d) and F3(d,t) on particular arguments as the values computed by
the associated algorithms.

Using our formal definition of certification trails, let D be the set of all finite planar point sets
T. Let S be the set of convex polygons, with vertices in counterclockwise order (the restriction to
counterclockwise ordering makes the convex hull unique). Then the problem we are considering is
HULL:D — S where HULI(T) is the polygon in S that forms the convex hull of T.

The description of the algorithms above defines functions F; and F;. We must show that both
conditions of Definition 2.2 hold. The following two lemmas, which we state without proof, are
required.

Lemma 3.4 Let P be a polygon on n points p1,pa,...,Ppn. P is a conver polygon iff P is simple
and each angle p;p;pi is less than or equal to 180 degrees, where i isin 1,2,..n, j = (i + 1) mod n,
and k = (i + 2) mod n.

Lemma 3.5 If P is a non-simple polygon, then either P has more than one local mazima, or the
inlerior angle at some vertez is greater than 180 degrees.

Theorem 3.6 Fi(d) and F;(d,t), as defined above, constitute a certification trail solution for the
problem HULL.

Proof: =~ We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: Recall that the first condition is: for all d € D there exists s € S and ¢ € T such
that Fi(d) = (s,t) and F3(d,t) = s and (d,s) € P. Intuitively, this means that if both executions
perform correctly, then they will both output the convex hull of the input, which is unique. Note
that generation of the certification trail does not affect the output of the Graham Scan algorithm.
Thus the condition on F(d) is satisfied by the correctness of the Graham Scan algorithm, the proof
of which is well known [20). To show that F3(d,t) = s, note that a copy of s is contained on the
trail t. Our description of Fy(d,t) states that s is output unless one of the five checks above fails.
It is trivial to verify that the first three of these checks must be satisfied. The fourth check cannot
fail, since the polygon described by s is convex (because (d,s) € P). Similarly, if the fifth check
fails, then the polygon described by s has two local maxima, and this is not possible for a convex
polygon.

Part 2: The second condition is: for all d € D all t € T either (F3(d,t) = s and (d,s) € P) or
F3(d,t) = error. Intuitively, this means that given an input and arbitrary trail, F3(d, t) produces a
solution to the problem or flags an error. Our definition of F3(d, t) states that the polygon Q stored
on the trail is output unless one of the five checks fails. We must therefore demonstrate that if all
five checks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of
the points d. The first condition guarantees that every point in d is classified as a hull point or an

7

Kl |

\\m f

il

"oy
il L

‘\l
i

! o=
i

L il

| B

interior point. The second condition guarantees that the triangles used to identify interior points
are formed from input points, and the third check verifies that the interior points are indeed inside
their respective triangles. Note that we do not attempt to verify that the triangles on the trail are
the ones that would be produced by Fi(d). In general, for a given interior point, there may be
several triangles of input points in which it is contained. Together, the first three conditions imply
that all points in H are also in Q, since it is impossible for a hull point to be contained in a triangle.
Note that these three checks do not exclude the possibility that interior points are present in Q,
nor do they guarantee that the ordering of the hull points in Q is correct. The final two checks
will accomplish this. If the last two checks are satisfied, Lemma 3.5 states that Q is simple, and
therefore it must be convex by Lemma 3.4.

Thus, Q is a convex polygon whose vertex set is a superset of the vertices of H , i.e., H is
contained in Q. This implies that no other point from the input set may be a vertex of Q, since any
input point that is not a hull point is interior to H and therefore interior to Q. Finally, it is clear
that the ordering of the vertices of Q and H must be the same (although there might appear to
be two possible orderings, clockwise and counterclockwise, a clockwise ordering will fail the fourth
check). Therefore if all five checks succeed, then the output of F3(d, t) will be the convex hull of d.

This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
therefore a certification trail solution to the convex hull problem. |

3.2 Other convex hull algorithms

It is possible to use this technique to provide certification trails for other convex hull algorithms.
The key is that for each non-hull point p we must find a triangle of input points (not necessarily hull
points), containing p. For some convex hull algorithms, a containing triangle is available directly or
can be easily computed when it is determined that a particular point is not on the hull. However,
this is not true of all convex hull algorithms. If, however, we allow extra overhead during the first
execution we may apply this technique to any planar convex hull algorithm, provided that the
output is a polygon and not merely an unordered list of hull vertices.

Let H = q1,¢2,¢3...,qx be the convex hull of a set of n points. We label the points so that ¢, is
the point with smallest abscissae (and smallest ordinate in case of a tie). Since H is convex, the
remaining points occur in sorted angular order around ¢,. Now for each non-hull point p, we may
determine which triangle p; p;pi4, it lies in with a binary search. Thus we may determine containing
triangles for the non-hull points in O(nlogh) time. Under several distributions the number of hull
points is much smaller than the number of input points [20] so this overhead will often be quite
small.

‘4 Sorting

Sorting is one of the most important basic problems in computer science. There is a massive body
of literature discussing sorting and a significant fraction of computer time is spent performing sort
operations. We will see how the certification trail approach may be applied to this problem. Assume
that a particular sorting algorithm takes as input an array of n elements and outputs an array of
n elements. The algorithm is supposed to place the data into non-decreasing order.

Note that it may not appear necessary to use a certification trail for this problem. It might seem
that all that is required is to verify that the output is in non-decreasing order. Unfortunately, this
is not sufficient and we must also verify that the output consists of the same elements as the input.
A certification trail is required to perform this check efficiently.

I w1,

t
I

[)
Dhiwlb il

|‘.| Ay

(i

I

"
i

LRl LI

1l

gl UE

1/ 11| B AN}

§

The information placed on the trail is a permutation relating the input and output arrays. This
permutation is created by adding an Item Number field to the elements being sorted, such that the
i-th element is labelled with item number i. After sorting, the permutation is obtained by reading
the Item Numbers from the elements in their new order.

The second algorithm reads the permutation from the trail, uses it to rearrange the input elements
in linear time, and checks that they are now in sorted order. Additionally, it is necessary to check
that the the information on the certification trail actually is a permutation of n elements, i.e., each
number from 1 to n occurs exactly once. Should any of these checks fail, the second algorithm
outputs “error”, otherwise it outputs the sorted elements.

Note that the certification trail given for sorting is quite different than that given for the convex
hull problem. In the latter case, the certification trail was constructed for a particular algorithm,
and the code executing that algorithm modified to produce the trail. In this case, the sorting
algorithm is not changed. Instead the data being sorted is modified by a preprocessing step, and the
necessary information extracted by a postprocessing step. Thus this technique may be implemented
as a “wrapper” around existing sort routines, no matter which algorithm is implemented.

Experimental data is presented in Section 6.

4.1 Proof of correctness

For concreteness we consider only the sorting of integers, though the proof does not depend on this
condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-
decreasing sequences of integers. Let P : D — S be the sorting problem, i.e., (d,s) € P iff s is a
permutation of d (by definition of S, 5 is a non-decreasing sequence). Note that for every d € D,
there is a unique s € S such that (d,s) € P. Let T consist of finite sequences of integers. For z a
member of any of the sets D, S, or T, we will also denote the sequence of integers by z;, 2, ..., zn.

Definition 4.2 The function F; : D — S x T is defined as follows. Given an input sequence d
of N integers, Fi(d) = (s,t) where s is the unique element of S such that, (d,s) € P and t is a
permutation of 1,2,3,...,Ns.t., s; = d;, forall i = 1,2,...N. Note that unless d consists of N distinct
integers, there will be more than one possible t. The ¢ produced by F(d) may be chosen arbitrarily.
Since for every d € D, there exists a unique s € S with (d, s) € P, the function F; is well defined.

Definition 4.3 The function F; : DxT — Su{error} is defined as follows. F3(d,t) = d,, Y PR
(where d consists of N integers) iff

i. t contains at least N integers.
ii. The first ¥ integers of ¢ are a permutation of {1,2,...N}.
iii. dg. < dg'-_H for i = 1,2,...,N— 1.

Otherwise, Fy(d,t) = error. Note that though ¢ may contain more than N integers, F3(d,t)
depends only on the first N.

The definitions of the functions F) and and F; correspond to the informal descriptions of the
sorting algorithms given in the text above.

Theorem 4.4 Fy and F; are a certification trail solution to the sorting problem P.

| A ER

/
|

mr i

ik
v i

BI

N

. 1t

Wil

i

Hmid|

ENmE

I

|

1
i

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: We must prove that for all d € D there exists s € S and ¢ € T such that Fi(d) = (s,1)
and F3(d,t) = s and (d,s) € P. If Fi(d) = (s,t), then by definition (d,s) € P. We must show
that Fy(d,t) = s. tis a permutation of {1,2, ..., N}, so the first two conditions of Definition 4.3 are
satisfied. Furthermore, by Definition 4.2, d;, = s; fori = 1,2,...N. Since s € S, itisa nondecreasing
sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore Fy(d,t) = s.

Part 2: We must show that for all d € D and all ¢ € T either (F3(d,t) = s and (d,s) € P)
or F3(d,t) = error. Pick d € D with length N. Pick t € T. The interesting case is when ¢ is a
permutation of {1,2,..., N}. If not, then either the first N integers of ¢ are not such a permutation,
in which case F3(d,t) = error. We may ignore the possibility that ¢ consists of such a permutation
followed by more integers, since F; depends only on the first N integers of t.

Examine the sequence dy,, dy,,,,ds. If there is an i such that d;, > dy;,, then the third condition
of Definition 4.3 is violated so F3(d,t) = error. Otherwise F3(d,t) = d;,,dy,, ..., d¢y. Furthermore,
this is a non-decreasing sequence, so it must be in S. Finally, since this sequence is a permutation
of d, (d, F5(d,t)) € P.

Therefore, both conditions of Definition 2.2 are satisfied, so F; and F; constitute a certification
trail solution to sorting. [

Note that we defined T as the set of all finite sequences of integers. We could have instead defined
T as the set of permutations of {1,2,...N} for all positive N. This would make the function I
“simpler”, in that it doesn’t have to verify that that certification trail consists of a permutation (it
would, however, have to verify that it consists of a permutation of the correct size). In this case,
checking that the trail ¢ is indeed a permuation (i.e., actually in its domain) would be left to the
implementation of the function.

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Qur approach is applied to

a variant of the Dijkstra algorithm [11] as explicated in [10]. First we require some preliminary
definitions.

Definition 5.1 A grapk G = (V, E) consists of a vertez set V and an edge set E. An edge is an
unordered pair of distinct vertices which we notate with the following style: [v, w] and we say v is
adjacent to w. A pathin a graph from v, to vy is a sequence of vertices vy, vs,...,v; such that
[vi, viy1] is an edge for i € {1,...,k - 1}. Let w be a real function defined on E. The length of a
path from v, to v; is the sum of w([vi, vi41]) for each edge [v;,v;41] in the path.

Let G = (1), E) be a graph and let w be a positive rational valued function defined on E. Given
a vertex v; in V, find a set of shortest paths from v; to each other vertex in V. Note that since w
is positive on all edges, a shortest path must exist between any two vertices, though it need not be
unique.

Before we discuss the algorithm we must describe the properties of the principal data structure
that are required. Since many different data structures can be used to implement the algorithm, we
initially describe abstractly the data that can be stored by the data structure and the operations
that can be used to manipulate this data. The data consists of a set of ordered pairs. The first
element in these ordered pairs is referred to as the item number and the second element is called
the item value or just value. Ordered pairs may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for

10

"
i il

U

L

v
|

!

LLH

ma il

i !

b

L]
isi

oo

ne

1l
i

10

multiple ordered pairs to have the same item value. In this paper the item numbers are integers
between 1 and n, inclusive. Qur default convention is that i is an item number, z is a value and
h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographically
as follows: (i,z) < (,2') iff £ < 2/ or (z = ’ and i <). Our data structure should support a
subset of the following operations.

member(i, k) returns a boolean value of true if h contains an ordered pair with item number i,
otherwise returns false.

insert(i,z, h) adds the ordered pair (i,z) to the set h.
delete(i, h) deletes the unique ordered pair with item number i from A.

changekey(s, z, h) is executed only when there is an ordered pair with item number ¢ in h. This
pair is replaced by (i, z).

deletemin(h) returns the ordered pair which is smallest according to the total order defined above
and deletes this pair. If h is the empty set then the token “empty” is returned.

predecessor(i, h) returns the item number of the ordered pair which immediately precedes the pair
with item number ¢ in the total order. If there is no predecessor then the token “smallest” is
returned.

A description such as the one above describes an abstract data type. There may be several
possible implementations for a particular ADT. In our solution, different ADT implementations
will be used for the two executions. The first implementation will produce a certification trail
allowing the second implementation to be simpler and to perform ADT operations more quickly.

Aside from the implementation of the abstract data type, both of our algorithms are the same.
Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm
on a sample graph. Table 1 records the data structure operations performed when the algorithm
is run on the sample graph. The first column gives the operations, with the parameter & omitted
to reduce clutter. Member operations are also omitted from the table. The second column gives
contents of h after the execution of each instruction. The third column records the order pair
deleted by deletemin operations. The fourth column records the information (if any) output to the
certification trail by this operation.

This certification trail is created by modifying the insert(i, z, k) and changekey(i, z, h) operations
performed during the first execution. The modified instructions perform the same operations
described above and in addition output the following information to the certification trail.

insert(i,z,h) Output the item number of the predecessor of (i,z) (as defined above) to the trail.
If there is no predecessor, output the token “smallest”. Note that depending on the data
structure implementation, the predecessor may already be computed during insertion or may
require a separate call to the predecessor(i, k) operation. :

changekey(i,z, h) Output the predecessor of the ordered pair (i,z) (i.e., pair resulting from the
change) to the trail. If there is no predecessor, output the token “smallest™ to the trail.

We shall see that this information allows a faster and simpler data structure implementation to be
used for our second algorithm.

The algorithm proceeds by maintaining a set § of vertices for which shortest path lengths are
known, and a “frontier” set F of vertices adjacent to members of S along with the best known path

11

CE

{908

L

Um I

i

LT

n
b

e

LI

L] W

l

length from v;. At each step, we find the vertex v in F with smallest known path length and place
itin §, F is then updated by examining the neighbors of v. New vertices may be added to F ora
shorter path (passing through v) may be found to existing vertices in F.

To efficiently find the vertex to add to §, the algorithm uses the data structure operations
described above. As soon as a vertex v is adjacent to some vertex u in S, it is inserted in the set
F. The value for v is the shortest known path to v, which is the value of u (shortest path to u)
plus the weight of edge vw. The array element prefer(v) is used to keep track of this “best” edge
connecting v to S. As the tree grows, information is updated by operations such as insert(i, z, k)
and changekey(i, z,h). The deletemin(h) operation is used to select the next vertex to add to the
span of the current tree. Note, the algorithm does not explicitly store paths. Implicitly, however,
if (v, z) is returned by deletemin, then prefer(v) indicates the predecessor of v on the shortest path
from v;.

Algorithm SHORTEST-PATH(G,v,,weight)
Input: Connected graph G = (V, E) where V = {1,...,n} with edge weights.
Output: Lengths of shortest paths from v, to all other vertices.

1 FOR ALL u€V, u):= 00 END FOR

2 vu):=0

3 F:= v1;

4 WHILE F #0 DO

5 (v,k):= deletemin(F)

6 FOR EACH [v,w)€ E DO

7 IF v) + weight([v, w]) < w) THEN

8 w) := v) + weight([v, w]); prefer(w) := v
9 IF member(w, F) THEN changekey(w, w), F)
10 ELSE insert(w, w), F) END IF

11 ENDIF

12 END FOR

13 END WHILE
14 FOR ALL u € V - {1}, OUTPUT(u)) END FOR
END SHORTEST-PATH

Note that this code may be easily modified to output the shortest paths as well as their lengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data
type is implemented with a balanced search tree such as an AVL tree 1}, a red-black tree [14], or
a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains
two fields, InSet, a boolean, and Value, storing the same type as the value used in the ordered
pairs. Initially, InSet is false for all array elements. The balanced search tree stores the ordered
pairs in k and is based on the total order described earlier. For each item number i, the InSet field
of the i-th array element is true if and only if there is a pair with item number ¢ in the set. The
Value field of the i-th array element stores the value of the pair with item number 1, if there is one
in the set. It is undefined if there is no such pair in the set. This array allows rapid execution of
operations such as member(i, h) and delete(i, h).

Second execution: This execution also uses the SHORTEST-PATH code, however, a different
data structure is used to implement the ADT. We call this data structure an indezed linked list
and it is depicted in Figure 5. It consists of an array and a doubly linked list. The array is indexed
from 0 to n and contains pointers to the elements of the linked list. Except for the first element,

12

[U FURFIR | i

NG

|

0 D

oo

b

v

L

g

Filll

Figure 3: Shortest path example.

13

RO 1+ A

|

i
|

1
i

il

[}
b

LI

b

e

o

Operation Set of Ordered Pairs Delete Trail
insert(2,50) (2,50) smallest
insert(3,60) (2,50),(3,60) 2
deletemin (3,60) (2,50)
insert(4,130) (3,60),(4,130) 3
insert(5,62) (3,60),(5,62),(4,130) 3
deletemin (5,62),(4,130) (3,60)
changekey(4,103) (5,62),(4,103) 3
deletemin (4,130) (5,62)
changekey(4,94) (4,94) smallest
insert(6,72) (6,72),(4,94) smallest
deletemin (4,94) (6,72)
deletemin (4,94)
deletemin empty

Table 1: Example of operations and trail.

each element in the list contains a data field storing an ordered pair. The first element stores a
special ordered pair (0, “smallest”) which is guaranteed to compare less than any other ordered
pair. The list is maintained in sorted order based on the total ordering defined above for ordered
pairs. This list represents the contents of the set A. The i-th element of the array points to the node
containing the ordered pair with item number i, if such an element is present in h. Otherwise the
pointer is nil. The 0-th element of the array points to the node containing (0, “smallest”) Initially,
all pointers are nil except for the 0-th one. Using an ordered list allows us to perform deletemin(h)
operations quickly. The array provides rapid random access to the elements. We now describe the
implementation of the data structure operations.

insert(i,z,h) Read the next value from the certification trail. This value, call it j, is the item
number of the ordered pair that will be the predecessor of (i,z) after it is inserted. To
insert this element, we follow the j-th array pointer to the list node containing the pair (j,y).
There is one special case, if “smallest” is read from the trail rather than an item number,
we follow the 0-th pointer. A new node is allocated and inserted into the list just after the
node containing (j,y). The data field of this node is set to (i,z). Finally, the i-th pointer is
set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,
given that the next item on the certification trail is 3. When the insert(¢, z, k) operation is
performed, some checks must be conducted:

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be “smallest” or be between 1 and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be nil before the operation is performed.

iv. The sorted order of the pairs stored in the linked list must be maintained. That is,
if the j-th pointer points to (j,y) and its successor before the insertion (ignoring the

14

w oo
i

I

|}

|

b

13

1

i

ol

{4

LRI

mm

special case when (j,y) is the last element of the list) is (j',y’), then we must have
(J:y) < (i,2) < (5", ¥).

If any of these checks fails, then the execution halts and “error™ is output.

delete(i, k) If the i-th pointer is nil, halt execution and output “error”. Otherwise follow the i-th
pointer to find the list node containing (i,z). This node is removed from the list. Note that
since the list is doubly linked, this is a constant time operation. The i-th pointer is then set

to nil. The only condition that must be checked is that the i-th pointer is not nil before the
deletion

changekey(i, z, h) To perform this operation, it suffices to perform delete(i, h) followed by insert(i, z, h).

The next item for the certification is read when the insert(i, z, h) operation is performed. If
any of the conditions required by either of these operations fails, then execution halts and
“error” is output.

deletemin(h) The 0-th array pointer is traversed to the list head (which contains (0, “smallest”)).
The pointer to the next node in the list is followed. If there is no next node then “empty” is
returned. Otherwise, let (i,z) be the pair stored in that node. We remove the node from the
list, set the i-th array element to nil, and return (i, z).

member(i, A) The i-th array pointer is examined. “False” is returned if it is nil, otherwise “true”
is returned.

predecessor(i, h) This operation is not used during the second execution of SHORTEST-PATH,
but is described for completeness. Follow the i-th pointer to the node containing the pair
(¢,z). Follow the pointer from that node to the node preceding it on the list (note that this
node will always exist). If this is the special node (0, “smallest”), return “smallest”, otherwise
return the item number of the pair stored in this list.

There are two variations to this scheme that are worth noting. First, we could implement a
singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the
extra pointer. Note, however, that operations such as delete(:, h) require access to predecessors in
order to update the list quickly. This can be provided by modifying the operations delete(i, h),
changekey(i, z, h), and predecessor(i, h) so that they output predecessor information to the trail.

The other variation also uses a singly linked list but removes the need for extra certification trail
information for delete(i, k) and changekey(i, z, k) operations. It uses the technique of marking a
list node for deletion rather than removing them from the list node immediately (the appropriate
pointer in the array is still set to nil immediately). When performing other operations, we check
for and remove any marked nodes immediately following nodes visited. The total running time is
still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in
O(log(n)) time where |V| = n. There are at most O(m) such operations and O(m) additional time
overhead where |E| = m. Thus, the first execution can be performed in O(mlog(n)) In addition,
it provides us with a relatively simple and illustrative example of the use of a certification trail.

In the second execution each data structure operation can be performed in O(1). There are still
at most O(m) such operations and O(m) additional time overhead. Hence, the second execution
can be performed in O(m) time, i.e., linear time.

Section 6 contains results of timing experiments with this technique.

15

il

"
W

ki 0l 1

LN

o

lw " |1H"
i Ll

mom

(Osm) fje> (360) |je> (4,130) | NIL
0 1 2 3 4 5 6

(Osm) &> (360) fe>| (562) fe>{ (4,130) |—> NIL
)
0 1 2 3 4 5 6

Figure 4: Example of the indexed linked list before and after inserting (5,62)

16

Lt

n
A

By

i

[T

5.1 Proof of correctness

We wish to prove that the two algorithms given above constitute a certification trail solution to the
SHORTEST-PATH problem, i.e., that the functions Fy(d) and F3(d,) defined by these algorithms
satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
structure operations.

Definition 5.2 Let D be the set of finite sequences of the data structure operations defined above.
Let S be the set of finite sequences of answers to data structure operations. Let P be the relation
(d,s) where d € D'and s € S, and s is the sequence of answers resulting from executing the
operations d starting with the empty set. '

Note that we are examining all finite sequences of data structure operations, not just “legal”
ones. That is, may attempt to perform an insertion with an item number already in use, attempt
to perform deletion on an item number not being used, etc. We assume that if one of these “illegal”
operations is attempted, the operation will output “error” and terminate processing. Thus, we can
define the answer sequences for these “illegal” sequences.

Definition 5.3 Let Fj(d) be defined by the result of executing the operations on any of the stan-
dard data structures described above, with the insert(i, z,) and changekey(i, z, k) operations mod-
ified to output trail information. Let F3(d,t) be defined by the result of executing the operations
using the indexed linked list implementation described above.

Theorem 5.4 Fy(d) and F;(d,t) meet the conditions of Definition 2.2 (that is, F,(d) and F(d,t)

constitule a certification trail solution for P).

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: The first condition we must verify is that for all d € D there exists s € S and there
exists t € T such that Fi(d) = (s,t) and F;(d,t) = s and (d,s) € P. Let (s,t) = F(d). The
modifications of the data structure operations that produce trail output do not affect how the data
structure is maintained. Proofs of correctness for the standard data structures are well known, so
we may assume (d,s) € P. We must demonstrate that F3(d,t) = s. ‘

This may be proven by showing that after each operation that modifies the set h, the elements
stored in the indexed linked list (our implementation) correspond to the elements in the set A (the
abstract definition). We must also demonstrate that if this relationship is maintained, then correct
output is generated by operations that generate output.

To demonstrate this, we show that each operation maintains the following invariants.

i. If the pair (#,z) is in h U (0, “smallest”), then the i-th pointer in the array of pointers points
to the list node containing (i,x).

ii. If, for some i, there is no pair in A with item number i then the i-th pointer is nil.
ili. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,
this implies that it is pointed to by exactly one pointer from the array).

The first two conditions assert that the indexed linked list and the set A contain the same
elements (ignoring the special list head element in the linked list). The last two invariants allow us
to demonstrate that the linked list operations function correctly.

17

il

'
L

it

r
k

e |

ki

L

L

v

Clearly each of these conditions is true before the first operation is performed (the set of pairs
is empty, all pointers except the 0-th are nil, and (0, “smallest”) is the only list node).

Assume that the above conditions are satisfied after the first k operations, and that the output
generated by any of the first k operations is correct. We claim that the invariants will will remain
satisfied after the (k+1)-st operation, and that if the (k+ 1)-st operation generates output, it will be
correct. Let s(k + 1) denote the output produced by the (k + 1)-st operation (where Fi(d) = (s,1)).

Consider each possible operation. For brevity, we omit details for “illegal™ operations, i.e., those
that violate the precondition of the operation. Similarly, we omit details of the special case of
“smallest” being read from the trail.

insert(i, z, h) The trail t contains the item number j of the predecessor of (i, z). Call the predecessor
(J,v). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs
“error” and execution halts. Since the indexed linked list correctly represents A at this point,
this agrees with the result returned by Fi(d), i.e., s(k + 1) = “error”. After the insertion is
performed, the i-th pointer is set to the new node containing (,z), so the first condition is
satisfied. No other nodes are added to the list, so the second condition will remain true. The
third condition is satisfied since (j,y) is now the immediate predecessor of (i,z). Since no
other pointer in the array has been changed, the fourth condition is still true.

delete(i, h) This operation sets the i-th pointer to nil, and removes the node containing (i,z)
from the list. This satisfies the second invariant. Deleting a node cannot violate the third
invariant. Since no other nodes are removed and no other pointers are changed, the first and
fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum
element in h must correspond to the node following the special list head node, call the pair it
contains (¢, z). This pair is the correct output for this operation. As with delete, the above
four conditions remain true after this node is removed and the i-th pointer set to nil.

changekey(i, z,h) We have implemented changekey(i,z,h) as an insertion followed by a deletion.
Since both of those preserve the invariants, changekey(i, z,) must do so as well.

member(i, k) By assumption, the indexed linked list correctly represents h before this operation,

so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invariants remain satisfied.

predecessor(i, h) By assumption, the indexed link list correctly represents h, and furthermore it is
currently in sorted order. Thus, the list element preceding the node containing (i, z) is the

predecessor. Since this operation changes neither A nor the indexed linked list, the invariants
remain satisfied.

This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d € D and for all t € T either (Fy(d,t) = s and
(d, s) € P) or F(d,t) = error. Intuitively, this states that if F3(d,t) is passed an arbitrary trail, it
either outputs a correct answer, or it outputs “error”. We prove an even stronger condition. Let
tcorrect be the trail returned by Fi(d), i.e., Fi(d) = (8,tcorrect). Then either teorrees is 2 prefix of ¢,
or F3(d,t) = error.

If teorrect is a prefix of ¢, then we are done. The algorithm describing F3(d,t) does not examine
any part of the trail after t.orrect, 80 F3(d,t) = s.

18

|F\'W IR
b Gl il

g

i
1)

I ML‘

L

[
!

il

If t.orrect is not a prefix of ¢, let p be the position at which they first differ. Let O be the number
of the operation that uses the trail data at p. Then operation O is either an insert(i,z,k) or
changekey(i, z, h) operation. If it is an insert operation, then tcorrect contains the item number of
the predecessor of (i, z). Since ¢ contains a different value, call it j, at this location, the insert(, z, h)
operation will fail one of it’s three checks. Either j will not be valid item number, or the j-th
pointer will be nil, or the pair (j,y) will not be the predecessor of (¢,z). The argument for the
changekey(i, z, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, F1(d) and F3(d,t) are a certification trail solution to P, the problem of evaluating
data structure operations. |

Definition 5.5 Let D be the set of finite graphs G = (V, E) with edge weights consisting of positive
integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples
of positive integers. Let P be the relation that associates each graph with the tuple consisting of
the minimum path lengths to each vertex. Let §Py(d) be the function defined by the SHORTEST-
PATH algorithm with the data structure defined for the first execution. Let SP;(d,t) be the function
defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.8 SPy(d) and SP;(d,t) constitute a certification trail solution for P.

Proof: If SPy(d) = (s,t), then the correctness of Dijkstra’s algorithm implies that (d,s) €
P. The algorithms that compute SPy(d) and SP;(d,t) are the same except for data structure
implementation. Theorem 5.4 implies that if these algorithms generate the same data structure
operations, then the same sequence of answers will be generated. Thus, to demonstrate that
SP,(d,t) = s, it must be shown that the same sequence of data structure operations is generated
by both algorithms. Examination of SHORTEST-PATH indicates that the k-th data structure
operation to be performed is dependent only on the input and the result of previous data structure
operations. For example, at line 9, either an insert(i,z,h) or a changekey(t,z,h) is performed,
depending on the result of a member(i,h) operation. The input graph d is identical for both
algorithms, thus the first data structure operation performed must be the same. Assume that the
first k operations performed by both algorithms are identical. Then, by Theorem 5.4, the answers
to those operation will be the same. Since the (k + 1)-st operation depends only on the input and
the results of the previous k operations, it must also be the same for both algorithms. Therefore
the same sequence of data operations is performed in both algorithms, so SP;(d,t) = s.

The proof that the second condition holds is the same as for Theorem 5.4. Either the input trail
t contains the “correct” trail as a prefix, or one of the data structure operations will fail, resulting
in an “error” output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results
of deletemin(k) are not output nor are they stored in the certification trail. It might be possible for
incorrect answers to be returned by deletemin(h) operations while still producing correct shortest
paths and lengths. The second execution of the SHORTEST-PATH algorithm will not detect this
since the correct output is produced. By proving that the answers to deletemin(h) operations are
the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, includ-
ing the ones described in this paper. Algorithms for solving these problems were implemented, both

19

||. Tl
Vol

E
e=

B

il

Vi

NI I

!

with and without the use of certification trails. Timing data was collected on both the certification
trail solutions and the basic solutions. The following tables summarize these results.

Size | Basic Algorithm First Execution Second Execution | Speedup | Percent
(Also Generates Trail) (Uses Trail) Savings
5000 0.61 0.62 0.07 8.73 43.62
10000 1.33 1.34 0.14 9.56 44.54
25000 3.68 3.68 0.36 10.22 45.12
50000 7.68 7.74 0.71 10.75 44.94
100000 16.23 16.30 1.43 11.35 45.39
200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull

Size Basic Algorithm First Execution Second Execution | Speedup | Percent

(Also Generates Trail) (Uses Trail) Savings
10000 0.28 0.30 0.04 7.00 39.29
50000 1.80 1.90 0.19 947 41.94
100000 3.96 4.08 0.41 9.66 43.31
500000 23.95 24.69 2.14 11.19 43.99
1000000 50.23 51.57 4.38 11.47 4431

Table 3: Sort
Size Basic Algorithm First Execution Second Execution | Speedup | Percent
(Also Generates Trail) (Uses Trail) Savings

100,1000 0.04 0.05 0.02 2.00 12.50

250,2500 0.15 0.16 0.06 2.50 26.67

500,5000 0.31 0.33 0.11 2.82 29.03

1000,10000 0.70 0.76 0.23 3.04 29.29

2000,20000 1.58 1.67 0.45 3.51 32.91

2500,25000 2.06 2.15 0.55 3.75 34.47

Table 4: Shortest Path

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The
system was run as a standalone machine in single user mode during timing experiments.

Much of the data presented in the timing table is essentially self-explanatory relative to the
certification trail technique and algorithms considered. However, a brief discussion of the table
entries is appropriate.

The column labelled Basic Algorithm contains timing data which gives the execution time of the
algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.

20

)
mu‘" bildia

L
d

g

l L]
M

WL T
Pl
uwln

i

il
4

B!

il

TR
il

nmne

The First Ezecution column gives the execution time of the algorithm in producing the output
with the additional overhead of generating the certification trail.

The Second Erecution column gives the execution time of the algorithm in producing the output
while using the certification trail.

The Speedup column is the ratio of the run times of the Basic Algorithm and the Secondary
Execution. One reason this figure is important is that it is possible for the two algorithms to run in
different environments (different hardware, programming language, etc). A high speedup indicates
that less powerful hardware or a higher level language (with associated overhead) may be sufficient
for the second execution.

The Percent Savings column records the percentage of the execution time savings which is gained
by using the certification trail method as compared to 2-version programming approach. The time
required for a 2-version programming approach was estimated by doubling the time reported in the
Basic algorithm. This assumes that both versions take approximately the same amount of time to
execute,

In addition to the tables, the timing information for the convex hull algorithm is plotted in
Figure 5. Plots for the other two examples are similar.

Examination of the data collected for the convex hull algorithm indicates that:

e The overhead in generating the certification trail is very small, less than 2% of the running
time of the basic (no certification trail) algorithm.

¢ The second execution is very fast, achieving an order of magnitude speedup for larger input
sizes. This suggests that a single “second algorithm” process could easily handle the output
generated by several “first algorithm” processes running in parallel. Alternately, the high
speedup would allow the second execution to be run on lower performance (and hence less
expensive) hardward. Finally, the large speedup and reduced code complexity may make it
possible to take advantage of a formally verifiable language (which may require significant
overhead) in implementing the second algorithm.

The data for sorting indicates that the certification trail also requires very low overhead and
results in a large speedup. For the shortest path problem the overhead is still very low, and the
speedup, while not as dramatic as for the first two problems, is still quite respectable.

7 Comparison With Other Techniques

The certification trail approach shares similarities with other valuable fault tolerance and fault
detection techniques that have been previously proposed and examined, but in each case there are
significant and fundamental distinctions. These distinctions are primarily related to the generation
and character of the certification trail and the manner in which the secondary algorithm uses the
certification trail.

First consider the important and useful technique called N-version programming (9, 3]. When
using this technique N different implementations of an algorithm are independently executed with
subsequent comparison of the resulting N outputs. There is no relationship among the executions of
the different versions of the algorithms other than that they all use the same input; each algorithm
is executed independently without any information about the execution of the other algorithms. In
marked contrast, the certification trail approach allows the primary algorithm to generate a trail
of information which can be read by the secondary algorithm. The advantages of utilizing this
additional information are shown in the body of this paper. In effect, N-version programming can
be thought of relative to the certification trail approach as the employment of a null trail.

21

m‘“’!'T l .
T, .

BT

[ey

(e

Bl

o

IR

35 1 1 | l | I | 1 1

30
25
")
i 20 |-
S
3
£L
Q
E 15 |
'.._
10 Basic Algorithm ——
Generate Trail ----
Use Trail -----
5 F -
0 BT DR R 1 1 1] | 1

0O 20 40 60 80 100 120 140 160 180 200
Number of Input Points (Thousands)

Figure 5: Convex Hull Run Times.

-
i

1
b

i

[F

it

Another valuable technique, known as the recovery block approach (2, 18, 21}, was proposed by
Randell. It uses acceptance tests and alternative procedures to produce what is to be regarded as
a correct output from a program. When using recovery blocks, a program is viewed as a being
structured into blocks of operations, which after execution yield outputs which can be tested in
some informal sense for correctness. The rigor, completeness, and nature of the acceptance test
is left to the program designer, and many of the acceptance tests that have been proposed for
use tend to be somewhat straightforward [2]. When using certification trails it is clearly possible
to combine the second execution and the comparison test to yield a program which certifies the
correctness of the output of the first execution. Unlike an acceptance test this certifier must satisfy
strict formal properties of correctness. Also note that the certification trail technique emphasizes
the capability of generating additional data to ease the certifying process and does not rely solely
on data which would normally be computed. It should be possible to fruitfully combine the ideas
of recovery blocks and certification trails.

Algorithm-based fault tolerance [15, 17, 19] uses error detecting and correcting codes for perform-
ing reliable computations with specific algorithms. This technique encodes data at a high level and
algorithms are specifically designed or modified to operate on encoded data and produce encoded
output data. Algorithm-based fault tolerance is distinguished from other fault tolerance techniques
by three characteristics: the encoding of the data used by the algorithm; the modification of the
algorithm to operate on the encoded data; and the distribution of the computation steps in the
algorithm among computational units. The error detection capabilities of the algorithm-based fault
tolerance approach are directly related to that of the error correction encoding utilized. The cer-
tification trail approach does not require that the data to be executed be modified nor that the
fundamental operations of the algorithm be changed to account for these modifications. Instead,
only a trail indicative of aspects of the algorithm’s operations must be generated by the algorithm.
As seen in Section 6, the production of this trail does not add significant overhead. Moreover, any
combination of computational errors can be handled.

Recently, Blum and Kannan (6] have defined what they call a program checker. This interesting
work has been followed by a burst of activity in this general area [12, 7, 25, 8, 4]. Each of these
papers, however, describes work which differs significantly from the work we present. A program
checker is an algorithm which checks the output of another algorithm for correctness. An early
example of a program checker is the algorithm developed by Tarjan [23] which takes as input a
graph and a supposed minimum spanning tree and indicates whether or not the tree actually is a
minimum spanning tree.

The Blum-Kannan program checking method differs from the certification trail method in two
important ways. First, the checker is designed to work for a problem and not a specific algorithm.
That is, the checker design is based on the input/output specification of a problem and no assump-
tions are made about the method being used to solve the problem. Because of this the algorithm
which is being checked is treated as a black box. It can not be altered nor can its internal status
be examined and exploited. In the certification trail approach the algorithm being checked is not
treated as a black box. Instead, the algorithm can be modified to generate additional information
(i.e., the certification trail) which is considered to be useful in the checking/verification process. By
exploiting this capability it is sometimes possible to design certification trail solutions which allow
faster checking than Blum-Kannan program checkers. Of course, these faster solutions are more
specialized than the Blum-Kannan checkers which are guaranteed to work for any algorithm which
solves the original problem. We believe that the added speed often outweighs the disadvantage of
specialization. .

The second important difference concerns the number of times that the program which is being
checked is executed. In the Blum-Kannan approach the program may be invoked a polynomial

23

[{1mery

il

C

o
A

3
L

-~
i,

1]
b

i

i}

| I

B

number of times. In the certification trail approach the program is run only once. Thus, the overall
time complexity of the checking process can be significantly larger for Blum-Kannan checkers.

A third less important difference stems from the fact that Blum-Kannan checkers are defined
in a more general probabilistic context. Certification trails are currently defined only for deter-
ministic programs and checkers. However, it is clearly possible to define them in the more general
probabilistic context.

Other work has been done to extend the ideas of Blum-Kannan to give methods which allow
the conversion of some programs into new programs which are self-testing and self-correcting [12,
7). However, these methods are also based on treating programs as black boxes and thus have
limitations similar to Blum-Kannan program checkers. A recent paper by Blum et al. [8] concerns
checking the correctness of memories and data structures. The results described in that paper
differ from our work using abstract data types in one central way. The checkers that they design
are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data
structures of size O(n). Our results do not place space constraints on the algorithm used to certify
the data structure. Without a space constraint we are able to certify abstract data types such as
priority queues which are more complex than the data structures that they check, i.e., stacks and
queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babai, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast
checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we
propose. Both methods modify original algorithms to yield new algorithms which output additional
information. We refer to this additional information as a certification trail and they refer to this
information as a witness. In our case we are interested in modified algorithms which have the same
asymptotic time complexity as the original algorithm. Indeed, the modified algorithm should be
slowed down by at most a factor of two. In [4] the modified algorithm is slowed down by more than
any fixed multiplicative factor. Specifically, if the original algorithm has a time complexity of O(T)
then the modified algorithm has a time complexity of O(T!*¢). Note that in practice the € cannot
be too small because its inverse appears in the exponent of the checker time complexity. Another
difference between our methods is the fact that their method requires that the input and output
be encoded using an error-correcting code. The encoding process takes O(N1+¢) time for strings
of length N. However, many of the checkers we have developed take only linear time so the cost
of simply preparing to use their method appears to be too great in some cases. It is also necessary
to decode the output after the check. Lastly, we note that Fortnow has stated that their result is
currently not practical [24].

8 Generalization and Future Research Areas

The experimental timing data on certification trails indicates that this technique is of great practical
value as well as of theoretical interest. Furthermore, the techniques illustrated are applicable to a
wide range of problems, especially the certification of Abstract Data Types described in the shortest
path example. There are many areas of interest for future exploration, a few of which are described
below. '

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program
may be used for a variety of problems. Since the certification trail is produced and used by abstract
data type operations, the technique may be used with any algorithm that can be implemented in
terms of those abstract data types. Creating a library of such “certified data types” enables

24

programmers to create fault tolerant programs without having to be familiar with the certification
trail technique. Object oriented programming appears to be well suited to this task.

A possible objection to this is that it provides fault detection only for the data structure imple-
mentation, since the surrounding code is simply reused. Furthermore, the data structure imple-
. Mmentation is likely to come from library code, and hence be highly reliable. In answer to this note
that:
o ¢ In many algorithms, the code using the data structure is much simpler than the code imple-
- menting the data structure.
o Although the example above illustrated reuse of using the data structures, it is certainly
b possible for this code to be developed separately for the first and second execution programs.
o Errors are often found even in code that has been in use for a long period of time. The added
- confidence of using this technique may be desirable even for library code.
: e Even if the library code is highly reliable, the certification trail can be helpful in detecting
- errors caused by hardware problems.
e Library code may have to be tuned or even rewritten to meet for a particular application or
B environment, partially negating the claim of using well-tested code.
=
Even if fault detection is not an issue, the certification trail technique is useful during program
== testing and debugging. Input may be automatically generated and processed. If the output of the
= first and second executions differ or an error is otherwise flagged, the input set is flagged. This
~ reduces the need to otherwise compute output for selected input and enables both more and larger
£i sets of input to be processed. 2-version programming may be used during debugging in a similar
- manner, however certification trails have the advantage of reduced overhead, allowing more test
cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussion and examples, the certification trail programs have been executed serially,
i.e., we do not run the second execution until after first execution completed. Actually, except for
sorting, the two executions in the examples above can be run almost-concurrently. The “second”
execution simply reads the information from the certification trail as it becomes available. The two
programs will finish nearly simultaneously, the difference being in the time after the last element
is read from or written to the certification trail.

=

i

o

1y

o
Tl 1

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution
after an error is detected. Consider the shortest path example using abstract data types. In
that example, the second execution used an indexed linked list that performed each operation in
constant time by using the certification trail from the first execution. Suppose that an error had
been detected during the second execution. Rather than simply aborting, it may be possible to
continue execution. This could be done by

il

i

= ¢ Reorganizing the existing set into some other data structure (such an AVL tree, red-black
_ tree, etc.) that allows efficient operation without a certification trail.

i 25

m

i [l sl

I

Py

I |

¥

il

I

i

¢ Continuing to use the indexed linked list and ignoring the rest of the certification trail. Note
that this would result in some operations requiring more time.

o Continuing to use the indexed linked list and attempting to use the certification trail for future
operations. This may be possible if the error that occurred has sufficiently “local” effect. For
example, if part of a tree structure is corrupted during the first execution, it is still possible
that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on “self-correcting” data structures in which enough
redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.
Using certification trails with such structures could provide an efficient detector for corruption of
the data structure.

References

[1] Adel’son-Vel'skii, G. M., and Landis, E. M., “An algorithm for the organization of informa-
tion”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

{2] Anderson, T., and Lee, P., Fault tolerance: principles and practices, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3] Avizienis, A., “The N-version approach to fault tolerant software,” IEEE Trans. on Software
Engineering, vol. 11, pp. 1491-1501, Dec., 1985. .

(4] Babai, L., Fortnow, L., Levin, L., and Szegedy, M., “Checking computations in polylogarithmic
time, ” Proceedings of the 23rd ACM Symposium on Theory of Computing, pp. 21-31, 1991.

[5] Bayer, R., and McCreight, E., “Organization of large ordered indexes”, Acta Inform., pp
173-189, 1, 1972.

(6] Blum, M., and Kannan, S., “Designing programs that check their work”, Proceedings of the
1989 ACM Symposium on Theory of Computing, pp. 86-97, ACM Press, 1989.

[7] Blum, M., Luby, M., and Rubinfeld, R., “Self-testing/correcting with applications to numerical
problems,” Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 73-83, 1990.

[8] Blum, M., Evans, W., Gemmell P., Kannan, S., and Naor, M., “Checking the correctness of
memories,” Proceedings of the §2nd IEEE Symposium on Foundations of Computer Science
PpP- 90-99, 1991

[9) Chen, L., and Avizienis A., “N-version programming: a fault tolerant approach to reliability of
software operation,” Digest of the 1978 Fault Tolerant Computing Symposium, pp. 3-9, IEEE
Computer Society Press, 1978.

[10] Cormen, T. H., and Leiserson, C. E., and Rivest, R. L., Introduction to Algorithms McGraw-
Hill, New York, NY, 1990.

[11] Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numer. Math. 1, pp.
269-271, Sept., 1959.

[12) Gemmell, R., Lipton, R., Rubinfeld, R., Sudan, M., and Wigderson, A., “Self-
testing/correcting for polynomials and for approximate functions,” Proceedings of the 23rd
ACM Symposium on Theory of Computing, pp. 32-42, 1991.

- 26

-

[13]) Graham, R. L., “An efficient algorithm for determining the convex hull of a planar set”,
Information Processing Letters, pp. 132-133, 1, 1972.

(14] Guibas, L. J., and Sedgewick, R., “A dichromatic framework for balanced trees”, Proceedings

of the Nineteenth Annual Symposium on Foundations of Computing, pp. 8-21, IEEE Computer
Society Press, 1978,

[15] Huang, K.-H., and Abraham, J., “Algorithm-based fault tolerance for matrix operations,”
IEEE Trans. on Computers, pp. 518-529, vol. C-33, June, 1984.

(16] Johnson, B., Design and analysis of fault tolerant digital systems Addison-Wesley, Reading,
MA, 1989.

I

(17] Jou, J.-Y. and Abraham, J. “Fault tolerant FFT networks,” Dig. of the 1985 Fault Tolerant
Computing Symposium, pp. 338-343, IEEE Computer Society Press, June, 1985.

(18] Lee, Y.H. and Shin, K.G., “Design and evaluation of a'fault-tolerant multiprocessor using
hardware recovery blocks,” IEEE Trans. Comput., vol. C-33, pp. 113-124, Feb. 1984.

[19] Nair, V., and Abraham, J., “General linear codes for fault-tolerant matrix operations on

Processor arrays,” Dig. of the 1988 Fault Tolerant Computing Symposium, pp. 180-185, June,
1988.

(
I

[20] Preparata F. P., and Shamos M. 1., Computational geometry: an introduction, Springer-Verlag,
New York, NY, 1985.

‘\II I
liii i

i

|

[21] Randell, B., “System structure for software fault tolerance,” IEEE Trans. on Software Engi-
neering, vol. 1, pp. 220-232, June, 1975.

I

1

[22] Siewiorek, D., and Swarz, R., The theory and practice of reliable design, Digital Press, Bedford,
MA, 1982.

i

[23] Tarjan, R. E., “Applications of path compression on balanced trees”, J. ACM, pp. 690-715,
Oct., 1979.

e
‘1 i L, o

(24] Paul Wallich, “Crunching Epsilon,” Scientific American, pp. 22-24, Jan., 1993

[25] Andrew Chi-Chih Yao, “Coherent Functions and Program Checkers,” Proc. 22 ACM Symp. of
Theory of Computing, pp. 84-94.

b b

o

L

I

1T

ST
i

27

"
|

| [y

Finally we discuss the work our group has performed on the
design and implementation of fault injection testbeds for experi-
mental analysis of the certification trail technique This work em-
ploys two distinct methodologies: software fault injection (mod-
ification of instruction, data, and stack segments of programs on
a Sun Sparcstation ELC and on an IBM 386 PC) and hardware
fault injection (control, address, and data lines of an Motorola
MC68000-based target system pulsed at logical zero/one values).
Our results indicate the viability of the certification trail tech-
nique. We also believe the tools we have developed provide a
solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error
monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to
fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-
prehensive attempt to assess experimentally the performance and overall
value of the method. We have implemented several fundamental algorithms
together with versions of the algorithms which generate and utilize certifica-
tion trails. Specifically, algorithms for the following problems are analyzed:
huffman tree, shortest path, minimum spanning tree, sorting, and convex
hull. Our results reveal many cases in which an approach using certification
trails allows for significantly faster overall program execution time than a
basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-
stract data types. This kind of problem was originally proposed in [3] and
provides a basis for applying the certification-trail method to wide classes of
algorithms. For this paper we implemented and analyzed answer-validation
solutions for two abstract data types. The first solution is for a simplified
priority queue which allows insert, min and deletemin operations, and the
second solution is for a priority queue which allows insert, min, delete and
deletemin operations. In both cases, the algorithm which performs answer-
validation is substantial faster than the original algorithm for computing the
answers.

This paper next presents a simple probabilistic model and analysis which
enables comparison between the certification-trail method and the time-

PRERESNG PAGE W, 000k 10T FILMM)

it}

.l

(i

|,

m
i kst

!
i

;|
il

L

redundancy approach. The analysis shows that when the certification-trail
method has a smaller execution time than the time-redundancy approach
it yields strictly superior performance. This means the method has both
a a smaller probability of error and a smaller probability of undetected
error. Surprisingly, the analysis also reveals the intriguing result that the
certification-trail method often can display superior performance even when
the method has the same execution time or a longer execution time than the
time-redundancy approach. This superior behavior stems from the typical
assymetry of the execution times of the first and second executions in the
certification-trail method.

The paper next discusses the work our group has performed on the design
and implementation of fault injection testbeds. This work employs two
distinct methodologies: software fault injection and hardware fault injection.
The software fault injection tool is similar to an interactive debugger but
more accurately can be considered an interactive bugger. It allows programs
to be halted and faults to be injected by direct modification of the stack,
data and instruction segments of a program. QOutput can then be captured
and characterized.

The hardware fault injector is based on injecting faults into an operating
microprocessor. The injection is performed by explicitly setting one or more
pins of the microprocessor to logical zero and/or logical one values. The
timing and duration of the pin setting is under control of a supervisory
processor. The testbed also includes a multi-processor system. This system
consists of three processors which are connected to one another pairwise by
shared banks of dual ported memory. We plan to use this system to conduct
evaluation of systems which utilize concurrent execution of algorithms using
the certification-trail method.

2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault
tolerance, we will first discuss a simpler fault-tolerant software method. In
this method the specification of a problem is given and an algorithm to solve
it is constructed. This algorithm is executed on an input and the output is
stored. Next, the same algorithm is executed again on the same input and
the output is compared to the earlier output. If the outputs differ then an
error is indicated, otherwise the output is accepted as correct. This software
fault tolerance method requires additional time, so-called time redundancy

Hﬂ

Ul

L HIl i

t L

(-

(32, 52]; however, it requires no additional software. It is particularly valu-
able for detecting errors caused by transient fault phenomena. If such faults
cause an error during only one of the executions then either the error will be
detected or the output will be correct. The second possibility, of undetected
faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for
each execution, which have been written independently based on the problem
specification. This technique, called N-version programming [16, 12] (in
this case N=2), allows for the detection of errors caused by some faults
in the software in addition to those cause by transient hardware faults and
utilizes both time and software redundancy. Errors caused by software faults
are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of
error-detection capabilities but expend fewer resources. The central idea,
as illustrated in Figure 1, is to modify the first algorithm so that it leaves
behind a trail of data which we call a certification trail. This data is chosen
so that it can allow the the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of
the two executions are compared and are considered correct only if they
agree. Note, however, we must be careful in defining this method or else
its error detection capability might be reduced by the introduction of data
dependency between the two algorithm executions. For example, suppose
the first algorithm execution contains an error which causes an incorrect
output and an incorrect trail of data to be generated. Further suppose
that no error occurs during the execution of the second algorithm. It still
appears possible that the execution of the second algorithm might use the
incorrect trail to generate an incorrect output which matches the incorrect
output given by the execution of the first algorithm. Intuitively, the second
execution would be “fooled” by the data left behind by the first execution.
The definitions we give below exclude this possibility. They demand that
the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and
discuss some aspects of its realizations and uses.

"
&

m..mwn '
kil

| A

N94- 36064
Certification of Computational Results /58 57/

Gregory F. Sullivan!
Dwight S. Wilson?
Gerald M. Masson?

Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

Abstract

We describe a conceptually novel and powerful technique to achieve fault detection
and fault tolerance in hardware and software systems. When used for software fault
detection, this new technique uses time and software redundancy and can be outlined as
follows. In the initial phase, a program is run to solve a problem and store the result.
In addition, this program leaves behind a trail of data which we call a certification trail.
In the second phase, another program is run which solves the original problem again.
This program, however, has access to the certification trail left by the first program.
Because of the availability of the certification trail, the second phase can be performed
by a less complex program and can execute more quickly. In the final phase, the two
results are compared and if they agree the results are accepted as correct; otherwise an
error is indicated. An essential aspect of this approach is that the second program must
always generate either an error indication or a correct output even when the certification
trail it receives from the first program is incorrect. We formalize the certification trail
approach to fault tolerance and illustrate realizations of it by considering algorithms
for the following problems: convex hull, sorting, and shortest path, We discuss cases in
which the second phase can be run concurrently with the first and act as a monitor. We
compare the certification trail approach to other approaches to fault tolerance.

Keywords: Software fault tolerance, error monitoring, design diversity, data structures.

1 Introduction

In this paper we describe a novel and powerful technique for achieving fault tolerance in systems.
Although applicable to both hardware and software implementation, we restrict our discussion
of this technique to implementation in software. To explain our technique, we will first discuss
a simpler method. In this method the specification of a problem is given and an algorithm to
solve it is constructed. This algorithm is executed on a particular input and the output is stored.
Next, the same algorithm is executed again on the same input and the output is compared to the
earlier output. If the outputs differ then an error is indicated, otherwise the output is accepted
as correct. This method requires additional time, so called time redundancy [16, 22]; however, it
requires no additional software. It is particularly valuable for detecting errors caused by transient
fault phenomena. If such faults cause an error during only one of the executions then either the
error will be detected or the output will be correct.

A variation of the above method uses two separate algorithms, one for each execution, which have
been written independently based on the problem specification. This technique, called N-version
programming [9, 3] (in this case N=2), allows for the detection of errors caused by some faults in

'Research partially supported by NSF Grants CCR-8910569 and CCR-8908092.
?Research partially supported by NSF Grant CDA-9015667.
3Research partially supported by NASA Grant NSG 1442.

f. 27

(et

1!

I

|H

First Execution

Duplicate Certification Trail

Compare

or Error

Second Execution

Figure 1: Certification trail method.

the software in addition to those caused by transient hardware faults and utilizes both time and
software redundancy. Errors caused by software faults are detected whenever the independently
written programs do not generate coincident errors.

A significant drawback to the above approaches is the overhead required. FEither extra time
is required to run the algorithms serially on a single processor or extra hardware is required to
run them in parallel. The technique we will describe is designed to achieve similar types of error
detection capabilities while reducing the required resource overhead. The central idea, as illustrated
in Figure 1, is to modify the first algorithm so that it leaves behind a trail of data which we call a
certification trail. This data is chosen to allow the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of the two executions are
compared and are considered correct only if they agree. Note, however, that we must be careful in
defining this method or else its error detection capability might be reduced by the introduction of
data dependency between the two algorithm executions. For example, suppose the first algorithm
execution contains an error which causes an incorrect output and an incorrect trail of data to be
generated. Further suppose that no error occurs during the execution of the second algorithm. It
appears possible that the execution of the second algorithm might use the incorrect trail to generate
an incorrect output which matches the incorrect output produced by the first algorithm. Intuitively,
we can regard the two executions as “adversaries.” The second execution must guard against an
incorrect certification trail “fooling™ it into producing an incorrect output. The definitions we give
below exclude this possibility. They demand that the second execution either generates a correct
answer or signals the fact that an error has been detected in the certification trail.

2 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and discuss some aspects of
its realizations and uses.

Definition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let D be the
domain (that is, the set of inputs) of the relation P and let S be the range (that is, the set of
solutions) for the problem. We say an algorithm A solves a problem P iff for all d € D when d is
input to A then an s € S is output such that (d,s) € P.

Definition 2.2 Let P : D — S be a problem. A solution to this problem using a certification
trail consists of two functions Fj and F; with the following domains and ranges /1 : D - Sx T
and F; : D x T — S U {error}. T is the set of certification trails. The functions must satisfy the
following two properties:

(1) for all d € D there exists s € S and there exists ¢t € T such that
Fi(d) = (s,t) and F3(d,t) = s and (d,s)€ P
(2)forallde D and forallte€ T
either (F3(d,t) = s and (d, s) € P) or F3(d,t) = error.

We also require that F; and F; be implemented so that they map elements not in their respective
domains to the error symbol. The definitions above assure that the error detection capability of
the certification trail approach is comparable to that obtained with the simple time redundancy
approach discussed earlier. (That is, if transient hardware faults occur during only one of the
executions then either an error will be detected or the output will be correct.) It should be further
noted, however, that the examples to be considered will indicate that this approach can also save
overall execution time.

The certification trail approach also allows for the detection of faults in software. As in 2-
version programming, separate teams can write the algorithms for the first and second executions.
Note that the specification now must include precise information describing the generation and
use of the certification trail. Because of the additional data available to the second execution,
the specifications of the two phases can be very different; similarly, the two algorithms used to
implement the phases can be very different. (This will be illustrated in the convex hull example to
be considered later.) Alternatively, the two algorithms can be very similar, differing only in data
structure manipulations. (This will be illustrated in the shortest path example to be considered
later.) When significantly different algorithms are used, the probability that both algorithms will
contain or be affected by faults which generate matching errors should be reduced. When very
similar algorithms are used it is sometimes possible to save programming effort by sharing program
code. For example, the code implementing any data structures needed by the program might be
different, while the code that uses the data structure operations would be the same. This approach
is well suited for the creation of libraries of fault-tolerant data structures. While this reduces the
ability to detect errors in the software it does not change the ability to detect transient hardware
errors as discussed earlier. Furthermore, in situations like the above example, it is possible (perhaps
even probable) that the majority of software errors will be in the data structure implementation.
Thus the ability to detect software errors may not be reduced as much as first imagined.

Throughout this section we have assumed that our method is implemented with software, how-
ever, it is clearly possible to implement the method with assistance from dedicated hardware. It
is also possible to generalize the basic idea we have suggested. We discuss some of these gener-
alizations in a later section. Finally, we note that a wide variety of approaches to software fault
tolerance have been proposed and we contrast our method to the most closely related ideas in a
later section.

In the following two sections we illustrate the application of certification trails to three well-
known and significant problems in computer science: the convex hull problem, sorting, and the
shortest path problem. It should be stressed that the certification trail is not limited to these
problems. Rather, these algorithms have been selected for illustrative purposes.

3 Certification Trails for Convex Hulls

The convex hull problem is a fundamental one in computational geometry. Our certification trail
solution is based on a solution due to Graham [13] called Graham’s Scan. For basic definitions in
computational geometry see the text of Preparata and Shamos [20]. This text also illustrates some
statistical applications of convex hull computations. For simplicity in the following discussion we
will assume the points are in so called general position, i.e., no three points are co-linear. It is not
difficult to remove this restriction.

Definition 3.1 The convez hull of a set of N points, S, in the Euclidean plane is defined as the
smallest convex polygon enclosing all the points. This polygon is unique and its vertices are a
subset of the points in §. It is specified by a counterclockwise sequence of its vertices.

The algorithm given below constructs the convex hull incrementally in a counterclockwise fash-
jon. Sometimes it is necessary for the algorithm to “backup” the construction by throwing some
vertices out and then continuing. The first step of the algorithm selects the point with minimum
x-coordinate (using minimum y-coordinate to break ties), and calls it p;. For each other point ¢
in § we compute the slope of the line p1g. Sort the points of S (except for py) by this slope (since
the points are in general position, the slopes are distinct). Number these vertices pz, p3,...,PN-
It is not hard to show that after these three steps the points when taken in order, p1,p2,-- -, Pn;
form a simple polygon; although this polygon might not be convex. It is possible to think of the
algorithm as removing points from this simple polygon until it becomes convex. This code below
performs this by “walking” through the vertices in order. The main FOR loop iteration adds points
to the polygon under construction. After a point is added, the inner WHILE loop checks the angle
formed by the addition of this point. (Note: We measure angles as follows: Given the three points
Gm-1,¢m, Pk We measure the angle from gm_1gm 10 gmpsi in the clockwise direction.) If the angle
is not acute (i.e., it makes the the polygon non-convex), then the angle vertex (i.e., the preceding
point on the polygon) is removed. Note that this will change the preceding angle, which may
now be obtuse and should be eliminated. The WHILE loop terminates when an acute angle is
encountered. Figure 2 illustrates the construction of a convex hull using this algorithm. from the
hull.

When the main FOR loop is complete the convex hull has been constructed.

Algorithm CONVEXHULL(S)
Input: Set of points, S, in R?
Output: Counterclockwise sequence of points in R? which define convex hull of §
1 Let p; be the point with the smallest z coordinate (and smallest y to break ties)
2 For each point p (except py) calculate the slope of the line through p; and p
3 Sort the points (except p;) from the smallest slope to the largest.
Call them p;,...,pn
4 qui=pi @i=p @i=p3 m=3
5 FORk=4tonDO :
6 WHILE the angle formed by gm—1,qm, Pk is > 180 degrees DO
7
8

m:=m-1
END WHILE
9 m:=m+1
10 gm:=p:
11 END FOR

12 FOR i = 1 to m DO, OUTPUT(¢;) END FOR

4

¢

s
i

[T

)
ﬁ H‘
o

Figure 2: Convex hull example.

END CONVEXHULL

First execution: To generate a certification trail for this algorithm, we rely on the property
that for each point eliminated by the WHILE loop in the code above, we can produce a triangle of
points in § containing the eliminated point.

Theorem 3.2 Letp, a, b, and ¢, be points in the plane such that no three are co-linear, p has the
smallest 1 -coordinate of the four points (and the smaller y-coordinate if another other point has the
same z-coordinate) slope(pa) < slope(pb) < slope(pc). If the angle abe is obtuse (measured in the
clockwise direction), then b is inside the triangle pac.

Proof: By the ordering of the slopes, b is inside the triangular wedge determined by the rays
pa and pe. Note that the line segments pa and pe are in the half plain z > p,, and in at least one
case the inequality is strict, since no three points are co-linear. This implies that the angle ape (in
the clockwise direction) must be greater than 180 degrees. Since the angle abe is also obtuse, both
p and b must be on the same side of line @@, Therefore, b is inside the triangle pac. |

Corollary 3.3 During ezecution of CONVEXHULL, if, after adding Pk, the angle formed by
qm-1,9m, Pk is obtuse (measured in the clockwise direction), then gq,, is contained in the triangle

P1,9m-1, Pk-

Proof: slope(Pigm=1) < slope(Pigm) < slope(pipr). |

In the first execution the code CONVEXHULL is used. The certification trail is generated by
- adding an output statement within the WHILE loop. Specifically, if an angle greater than 180
degrees is found in the WHILE loop test then the 4-tuple consisting of gm, gm-1, P1, P& is output to
the certification trail. The table below shows the 4-tuples of points that would be output by the
algorithm when run on the example in Figure 2. The points in the table are given the same names
as in Figure 2. The final convex hull points ¢;,...,qm are also output to the certification trail.
Finally, the trail output does not consist of the actual points in R2. Instead, it consists of indices
to the original input data. This means if the original g§[§7§9}1518t8 of 81,32,...,3n then rather than
outpuf ‘the element in R? correspondmg to 73,' The number { is output. If pomt coordinates were
output instead of these indices, the second execution would have to verify that the points on the

tra.ll are members of S.

| lel \ | P

Point not on convex hull Three surrounding points
S S S Pe,1, P2
— ps Ps: P1, P4
pr P31, Ps

SRS T

Second execution: Let the certification trail consist of a set of 4-tuples, (z1, a1, 41, ¢1), (22, a2,b3,¢2),
» (2r,a,,b,,¢,) followed by the supposed convex hull, q1,¢2,...,gm- The code for CONVEX-
HULL is not used in this execution. Indeed, the algorithm performed is dramatlca.lly different than

CONVEXHULL.
It consists of five checks on the trail data.
;i—— -i. That_ Lb%j. one to one correspondence between the input points and the points in
{z1,.. 2 3 U{q1, -1 qm)}
m— ii. That for ¢ € {1 .,T}, a;, b;, and ¢; are among the input points.
iii. Forie {1 .,7} that z; lies within the triangle defined by a;,b;, and ¢;.
- iv. That for each triple of counterclockwise consecutive points on the supposed convex hull the
angle formed by the points is acute.
e v. That there is a unique point among the points on the supposed convex hull which is a locally
maximal point. We say a point ¢ on the hull is a local mazimum point if its predecessor in the
o counterclockwise ordering has a strictly smaller y coordinate and its successor in the ordering
R has a smaller or equal y coordinate.
- If any of these checks fail then execution halts and “error” is output. As mentioned above, the
~-=: . trail data actually consists of indices into the input data. This does not unduly complicate the
" checks above; in fact it makes it easier to verify the first and second conditions.
Time complexity: In the first execution the sorting of the input points takes O(nlog(n)) time
» == . where n is the number of input points. One can show that this cost dominates and the overall
complexity is O(nlog(n)).
It is possible to implement the second execution so that all five checks are done in O(n) time.

"~ Because indices into the input data are used, the first condition can be checked by verifying that
each index is used exactly once, and that all indices are between 1 and N. The second condition
may checked simply by verifying that each index is between 1 and N. Checking that a point lies

_F

(M)

|1

c: 1

Liil

within a triangle is a geometric calculation that can be done in constant time. Checking that the
angle formed by three points is acute requires only constant time. The third and fourth checks can
be done in O(n) because the certification trail contains indices into the input data as described
above. The uniqueness of the “local maximum™ requires only a constant time calculation at each
point, so it may checked in linear time.

Experimental timing data for this method may be found in Section 6.

3.1 Proof of correctness

We wish to prove that the algorithms above constitute a certification trail solution for the convex
hull problem. Although the definition is phrased in terms of functions, not algorithms, we can
simply define the functions Fy(d) and F3(d,t) on particular arguments as the values computed by
the associated algorithms.

Using our formal definition of certification trails, let D be the set of all finite planar point sets
T. Let S be the set of convex polygons, with vertices in counterclockwise order (the restriction to
counterclockwise ordering makes the convex hull unique). Then the problem we are considering is
HULL:D — S where HULI(T) is the polygon in S that forms the convex hull of T'.

The description of the algorithms above defines functions F; and F;. We must show that both
conditions of Definition 2.2 hold. The following two lemmas, which we state without proof, are
required.

Lemma 3.4 Let P be a polygon on n points py,p2,...,Pa. P is a convez polygon iff P is simple

_“w~and each angle p;p;p; is less than or equal to 180 degrees, where i is in 1,2,...n, j = (i + 1) mod ,
~and k = (i + 2) mod n.

Lemma 3.5 If P is a non-simple polygon, then either P has more than one local mazima, or the
interior angle at some vertez is greater than 180 degrees.

Theorem 3.8 F\(d) and F3(d,t), as defined above, constitute a certification trasl solution for the
problem HULL.

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: Recall that the first condition is: for all d € D there exists s € S and t € T such
that Fy(d) = (s,t) and F3(d,t) = s and (d, s) € P. Intuitively, this means that if both executions
perform correctly, then they will both output the convex hull of the input, which is unique. Note
that generation of the certification trail does not affect the output of the Graham Scan algorithm.
Thus the condition on F(d) is satisfied by the correctness of the Graham Scan algorithm, the proof
of which is well known [20}. To show that F3(d,t) = s, note that a copy of s is contained on the
trail £. Our description of F3(d,t) states that s is output unless one of the five checks above fails.
It is trivial to verify that the first three of these checks must be satisfied. The fourth check cannot
fail, since the polygon described by s is convex (because (d,s) € P). Similarly, if the fifth check
fails, then the polygon described by s has two local maxima, and this is not possible for a convex
polygon.

Part 2: The second condition is: for all d € D all t € T either (F3(d,t) = s and (d,s) € P) or
F3(d,t) = error. Intuitively, this means that given an input and arbitrary trail, F3(d,t) produces a
solution to the problem or flags an error. Our definition of F3(d,t) states that the polygon Q stored
on the trail is output unless one of the five checks fails. We must therefore demonstrate that if all
five checks succeed, then Q is the convex hull of the input points d. Let H be the convex hull of
the points d. The first condition guarantees that every point in d is classified as a hull point or an

7

w interior point. The second condition guarantees that the triangles used to identify interior points
. . are formed from input points, and the third check verifies that the interior points are indeed inside

i_the ones that would be produced by Fi(d). In general, for a given interior point, there may be
several triangles of input points in which it is contained. Together, the first three conditions imply
that all points in & are also in Q, since it is impossible for a hull point to be contained in a triangle.
1 Note that these three checks do not exclude the Possibility that interior points are Present in Q,

will accomplish this. If the last two checks are satisfied, Lemma 3.5 states that Q is simple, and
T _therefore it must be convex by Lemma 3.4.
Thus, Q is a convex polygon whose vertex set is a superset of the vertices of A, ie, H is
. ~-ontained in Q. This implies that no other point from the input set may be a vertex of Q, since any
nput point that is not a hull point is interior to A and therefore interior to Q. Finally, it is clear
that the ordering of the vertices of Q@ and H must be the same (although there might appear to
. ¢ two possible orderings, clockwise and counterclockwise, a clockwise ordering will fail the fourth
-Eheck). Therefore if all five checks succeed, then the output of F3(d,t) will be the convex hull of d.
This demonstrates that the algorithms described meet the conditions of Definition 2.2, and are
herefore a certification trail solution to the convex hull problem. |

il

3.2 Other convex hull algorithms

Let H = ¢, 42:93..-,qn be the convex hull of a set of n points. We label the points so that Q1 is
. point with smallest abscissae (and smallest ordinate in case of a tie). Since H is convex, the

L maining points occur in sorted angular order around ¢;,. Now for each non-hull point p, we may
_determine which triangle p, p;p; 4, it lies in with a binary search. Thus we may determine containing
. angles for the non-hull points in O(nlogh) time. Under several distributions the number of hul]
" ints is much smaller than the number of input points [20] so this overhead will often be quite
.small.

& Sorting

3 =

Oriiterature discussing sorting and a significant fraction of computer time is spent performing sort
Operations. We will see how the certification trail approach may be applied to this problem. Assume
'u&t a particular sorting algorithm takes as input an array of n elements and outputs an array of
nelements. The algorithm is supposed to place the data into non-decreasing order.

\ certification trail is required to perform this check efficiently.

| H]nl\ "
[iRis

ONGINAL PAGE 18
OF POCR QUALITY

I ol \"I

A
i

#

v

ot
IN.A

)

!

[
I

|" I

I

(I

I
iy
L

o
|

1]

The information placed on the trail is a permutation relating the input and output arrays. This
permutation is created by adding an Item Number field to the elements being sorted, such that the
i-th element is labelled with item number i. After sorting, the permutation is obtained by reading
the Item Numbers from the elements in their new order.

The second algorithm reads the permutation from the trail, uses it to rearrange the input elements
in linear time, and checks that they are now in sorted order. Additionally, it is necessary to check
that the the information on the certification trail actually is a permutation of n elements, i.e., each
number from 1 to n occurs exactly once. Should any of these checks fail, the second algorithm
outputs “error”, otherwise it outputs the sorted elements.

Note that the certification trail given for sorting is quite different than that given for the convex
hull problem. In the latter case, the certification trail was constructed for a particular algorithm,
and the code executing that algorithm modified to produce the trail. In this case, the sorting
algorithm is not changed. Instead the data being sorted is modified by a preprocessing step, and the
necessary information extracted by a postprocessing step. Thus this technique may be implemented
as a “wrapper” around existing sort routines, no matter which algorithm is implemented.

Experimental data is presented in Section 6.

4.1 Proof of correctness

For concreteness we consider only the sorting of integers, though the proof does not depend on this
condition.

Definition 4.1 Let D consist of all finite sequences of integers. Let S consist of all finite non-
decreasing sequences of integers. Let P : D — S be the sorting problem, i.e., (d,s)e Piff sis a
permutation of d (by definition of S, sis a non-decreasing sequence). Note that for every d € D,
there is a unique s € S such that (d,s) € P. Let T consist of finite sequences of integers. For z a
member of any of the sets D, S, or T, we will also denote the sequence of integers by z,, z,, ..., zn.

Definition 4.2 The function F, : D — S x T is defined as follows, Given an input sequence d
of N integers, Fi(d) = (s,t) where s is the unique element of S such that, (d,s) € P and t is a
permutation of 1,2,3,...,N s.t., s; = d;, forall i = 1,2,...N. Note that unless d consists of N distinct
integers, there will be more than one possible ¢. The ¢ produced by Fi(d) may be chosen arbitrarily.
Since for every d € D, there exists a unique s € S with (d, s) € P, the function F) is well defined.

Definition 4.3 The function Fy : DxT — Su{error} is defined as follows. Fy(d,t) = dy,, dy,, ..., d;
(where d consists of N integers) iff

N

i. ¢ contains at least N integers.
ii. The first N integers of ¢ are a permutation of {1,2,..N}.
iii. dy, < dy,,, fori=1,2,.. ,N-1.

Otherwise, F3(d,t) = error. Note that though ¢ may contain more than N integers, F3(d,t)
depends only on the first N.

The definitions of the functions F; and and F3 correspond to the informal descriptions of the
sorting algorithms given in the text above.

Theorem 4.4 F and F; are a certification trasl solution to the sorting problem P.

i i

C

[ww\ e
Jbiblic i

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.

Part 1: We must prove that for all d € D there exists s € S and t € T such that Fi(d) = (s,¢)
and Fp(d,t) = s and (d,s) € P. If Fi(d) = (s,t), then by definition (d,s) € P. We must show
that F3(d,t) = s. tis a permutation of {1,2,..., N}, so the first two conditions of Definition 4.3 are
satisfied. Furthermore, by Definition 4.2, d;, = s, fori = 1,2,...N. Since s € S,itisa nondecreasing
sequence, and thus the third condition of Definition 4.3 is satisfied. Therefore F3(d,t) = s.

Part 2: We must show that for all d € D and all ¢ € T either (F(d,t) = s and (d,s) € P)
or Fy(d,t) = error. Pick d € D with length N. Pick t € T. The interesting case is when ¢ is a
permutation of {1,2,..., N}. If not, then either the first NV integers of ¢ are not such a permutation,
in which case F3(d, t) = error. We may ignore the possibility that ¢ consists of such a permutation
followed by more integers, since F; depends only on the first N integers of t.

Examine the sequence d,,dy,,,,d;,. If there is an i such that d;, > d 41 then the third condition
of Definition 4.3 is violated so F3(d,t) = error. Otherwise F3(d,t) = d;,,dy,, ..., dt,. Furthermore,
this is a non-decreasing sequence, so it must be in S. Finally, since this sequence is a permutation
of d, (d, F3(d,t)) € P.

Therefore, both conditions of Definition 2.2 are satisfied, so F; and F; constitute a certification
trail solution to sorting. |l

Note that we defined T as the set of all finite sequences of integers. We could have instead defined
T as the set of permutations of {1,2,...N} for all positive N. This would make the function F;
“simpler”, in that it doesn’t have to verify that that certification trail consists of a permutation (it
would, however, have to verify that it consists of a permutation of the correct size). In this case,
checking that the trail ¢ is indeed a permuation (i.e., actually in its domain) would be left to the
implementation of the function.

5 Certification Trails for Shortest Paths

This classic problem has been examined extensively in the literature. Our approach is applied to

a variant of the Dijkstra algorithm [11] as explicated in [10). First we require some preliminary
definitions.

Definition 5.1 A graph G = (V, E) consists of a vertez set V and an edge set E. An edge is an
unordered pair of distinct vertices which we notate with the following style: [v, w] and we say v is
adjacent to w. A path in a graph from vy to vg is a sequence of vertices vy,0q,...,v; such that
[vi, ¥i41] is an edge for i € {1,...,k — 1}. Let w be a real function defined on E. The length of a
path from v; to vy is the sum of w([v;, vi41]) for each edge [vi, vi41] in the path.

Let G = (V| E) be a graph and let w be a positive rational valued function defined on E. Given
a vertex vy in V, find a set of shortest paths from v, to each other vertex in V. Note that since w
is positive on all edges, a shortest path must exist between any two vertices, though it need not be
unique.

Before we discuss the algorithm we must describe the properties of the principal data structure
that are required. Since many different data structures can be used to implement the algorithm, we
initially describe abstractly the data that can be stored by the data structure and the operations
that can be used to manipulate this data. The data consists of a set of ordered pairs. The first
element in these ordered pairs is referred to as the item number and the second element is called
the item value or just value. Ordered pairs may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs must be distinct. It is possible, though, for

10

0

e

 Hllibg

L

I e

it
i

A

0o

I

|

T

multiple ordered pairs to have the same item value. In this paper the item numbers are integers
between 1 and n, inclusive. Our default convention is that i is an jtem number, r is a value and
h is a set of ordered pairs. A total ordering on the pairs of a set can be defined lexicographically

as follows: (i,z) < (,2')iff z < 2’ or (z = 2’ and i <). Our data structure should support a
subset of the following operations.

member(i, h) returns a boolean value of true if A contains an ordered pair with item number i,
otherwise returns false.

insert(i, z, h) adds the ordered pair (1, z) to the set A.
delete(i, h) deletes the unique ordered pair with item number i from A.

changekey(i, z, k) is executed only when there is an ordered pair with item number § in h. This
pair is replaced by (i, z).

deletemin(h) returns the ordered pair which is smallest according to the total order defined above
and deletes this pair. If A js the empty set then the token “empty” is returned.

predecessor (i, h) returns the item number of the ordered pair which immediately precedes the pair

with item number i in the total order. If there js no predecessor then the token “smallest” is
returned.

A description such as the one above describes an abstract data type. There may be several
possible implementations for a particular ADT. In our solution, different ADT implementations
will be used for the two executions. The first implementation will produce a certification trail
allowing the second implementation to be simpler and to perform ADT operations more quickly.

Aside from the implementation of the abstract data type, both of our algorithms are the same.
Pidgin code for this algorithm appears below. Figure 3 illustrates the execution of the algorithm
on a sample graph. Table 1 records the data structure operations performed when the algorithm
is run on the sample graph. The first column gives the operations, with the parameter kA omitted
to reduce clutter. Member operations are also omitted from the table. The second column gives
contents of h after the execution of each instruction. The third column records the order pair
deleted by deletemin operations. The fourth column records the information (if any) output to the
certification trail by this operation.

This certification trail is created by modifying the insert(i, z, A) and changekey(4, z, h) operations
performed during the first executjon. The modified instructions perform the same operations
described above and in addition output the following information to the certification trail,

insert(i,z,h) Qutput the item number of the predecessor of (i,z) (as defined above) to the trail.
If there is no predecessor, output the token “smallest”. Note that depending on the data

structure implementation, the predecessor may already be computed during insertion or may
require a separate call to the predecessor(i, h) operation.

changekey(i, z, h) Output the predecessor of the ordered pair (,z) (i.e., pair resulting from the
change) to the trail. If there is no predecessor, output the token “smallest” to the trail.

We shall see that this information allow
used for our second algorithm.

The algorithm proceeds by maintaining a set § of vertices for which shortest path lengths are
known, and a “frontier” set F of vertices adjacent to members of S along with the best known path

s a faster and simpler data structure implementation to be

11

(e

v

g e

O 00~ bW

TN

=

==
—

length from v;. At each step, we find the vertex v in F with smallest known path length and place
it in §, F is then updated by examining the neighbors of v. New vertices may be added to Fora
shorter path (passing through v) may be found to existing vertices in F.

To efficiently find the vertex to add to S, the algorithm uses the data structure operations
described above. As soon as a vertex v is adjacent to some vertex u in S, it is inserted in the set
F. The value for v is the shortest known path to v, which is the value of u (shortest path to)
Plus the weight of edge vw. The array element prefer(v) is used to keep track of this “best” edge
connecting v to §. As the tree grows, information is updated by operations such as insert(i,z,h)
and changekey(i, z, h). The deletemin(h) operation is used to select the next vertex to add to the
span of the current tree. Note, the algorithm does not explicitly store paths. Implicitly, however,

if (v, z) is returned by deletemin, then prefer(v) indicates the predecessor of v on the shortest path
from v,.

Algorithm SHORTEST-PATH(G,v, ,weight)
Input: Connected graph G = (V, E) where V = {1,...,n} with edge weights.
Output: Lengths of shortest paths from v, to all other vertices.

FOR ALL u € V, u) := o0 END FOR
vl):=0
F := y;

WHILE F # ¢ DO
(v, k) := deletemin(F)
FOR EACH [v,w] € E DO
IF v) + weight([v, w]) < w) THEN
w) := v) + weight([v, w]); prefer(w) := v
IF member(w, F') THEN changekey(w, w), F)
10 ELSE insert(w, w), F) END IF
11 ENDIF
12 END FOR
13 END WHILE

14 FOR ALL u € V - {1}, OUTPUT(u)) END FOR
END SHORTEST-PATH

Note that this code may be easily modified to output the shortest paths as well as their lengths.

First execution: In this execution the SHORTEST-PATH code is used and the abstract data
type is implemented with a balanced search tree such as an AVL tree [1], a red-black tree [14], or
a b-tree [5]. In addition, an array indexed from 1 to n is used. Each element of this array contains
two fields, InSet, a boolean, and Value, storing the same type as the value used in the ordered
pairs. Initially, InSet is false for all array elements. The balanced search tree stores the ordered
pairs in h and is based on the total order described earlier. For each item number i, the InSet field
of the i-th array element is true if and only if there is a pair with item number ¢ in the set. The
Value field of the i-th array element stores the value of the pair with item number 1, if there is one
in the set. It is undefined if there is no such pair in the set. This array allows rapid execution of
operations such as member(i, h) and delete(i, h).

Second execution: This execution also uses the SHORTEST-PATH code, however, a different
data structure is used to implement the ADT. We call this data structure an indezed linked list
and it is depicted in Figure 5. It consists of an array and a doubly linked list. The array is indexed
from 0 to n and contains pointers to the elements of the linked list. Except for the first element,

12

I

!
{

 F

i

 Je

(B

A1/ AT (N (A 4]

i

Figure 3: Shortest path example.

13

.

o’
ue
o
I

 thil

liis

Y I |

i

I8N

hili

mz e

m
[

|34

il

E\

tl

Operation Set of Ordered Pairs Delete Trail
insert(2,50) (2,50) smallest
insert(3,60) (2,50),(3,60) 2
deletemin (3,60) (2,50)
insert(4,130) (3,60),(4,130) 3
insert(5,62) (3,60),(5,62),(4,130) 3
deletemin (5,62),(4,130) (3,60)
changekey(4,103) (5,62),(4,103) 3
deletemin (4,130) (5,62)
changekey(4,94) (4,94) smallest
insert(6,72) (6,72),(4,94) smallest
deletemin (4,94) (6,72)
deletemin (4,94)
deletemin empty

Table 1: Example of operations and trail.

each element in the list contains a data field storing an ordered pair. The first element stores a
special ordered pair (0, “smallest”) which is guaranteed to compare less than any other ordered
pair. The list is maintained in sorted order based on the total ordering defined above for ordered
pairs. This list represents the contents of the set s. The i-th element of the array points to the node
containing the ordered pair with item number 1, if such an element is present in A. Otherwise the
pointer is nil. The 0-th element of the array points to the node containing (0, “smallest™) Initially,
all pointers are nil except for the 0-th one. Using an ordered list allows us to perform deletemin(k)
operations quickly. The array provides rapid random access to the elements. We now describe the
implementation of the data structure operations.

insert(i,z,h) Read the next value from the certification trail. This value, call it 7, is the item
number of the ordered pair that will be the predecessor of (i,z) after it is inserted. To
insert this element, we follow the J-th array pointer to the list node containing the pair (j, y).
There is one special case, if “smallest” is read from the trail rather than an item number,
we follow the 0-th pointer. A new node is allocated and inserted into the list just after the
node containing (j,y). The data field of this node is set to (i, z). Finally, the i-th pointer is
set to point to the new node. Figure 5 shows the insertion of (5,62) into the data structure,
given that the next item on the certification trail is 3. When the insert(i, z, h) operation is
performed, some checks must be conducted:

i. The i-th array element must be nil before the operation is performed.

ii. The value j read from the trail must either be “smallest” or be between 1 and n, i.e., it
must be a valid item number.

iii. The j-th array element must not be nil before the operation is performed.

iv. The sorted order of the pairs stored in the linked list must be maintained. That is,
if the j-th pointer points to (j,y) and its successor before the insertion (ignoring the

14

e
L

L

e

Ly

o

|

i

U

Yo

R

{1 S 1] i

e

special case when (j,y) is the last element of the list) is (j',y’), then we must have
7y < (2) < (YY)

If any of these checks fails, then the execution halts and “error” is output.

delete(i, h) If the i-th pointer is nil, halt execution and output “error”. Otherwise follow the i-th
pointer to find the list node containing (i,z). This node is removed from the list. Note that
since the list is doubly linked, this is a constant time operation. The i-th pointer is then set

to nil. The only condition that must be checked is that the i-th pointer is not nil before the
deletion

changekey(i, z, k) To perform this operation, it suffices to perform delete(i, h) followed by insert(i, z,
The next item for the certification is read when the insert(i, z, k) operation is performed. If
any of the conditions required by either of these operations fails, then execution halts and
“error” is output.

deletemin(h) The 0-th array pointer is traversed to the list head (which contains (0, “smallest™)).
The pointer to the next node in the list is followed. If there is no next node then “empty” is
returned. Otherwise, let (7, z) be the pair stored in that node. We remove the node from the
list, set the i-th array element to nil, and return ({,z).

member(i,h) The i-th array pointer is examined. “False” is returned if it is nil, otherwise “true”
is returned.

predecessor(i, h) This operation is not used during the second execution of SHORTEST-PATH,
but is described for completeness. Follow the i-th pointer to the node containing the pair
(i, z). Follow the pointer from that node to the node preceding it on the list (note that this
node will always exist). If this is the special node (0, “smallest”), return “smallest™, otherwise
return the item number of the pair stored in this list.

There are two variations to this scheme that are worth noting. First, we could implement a
singly linked list rather than a doubly linked list. This eliminates the overhead of maintaining the
extra pointer. Note, however, that operations such as delete(i, h) require access to predecessors in
order to update the list quickly. This can be provided by modifying the operations delete(i, k),
changekey(i, z, k), and predecessor(i, h) so that they output predecessor information to the trail.

The other variation also uses a singly linked list but removes the need for extra certification trail
information for delete(i, k) and changekey(i, z, h) operations. It uses the technique of marking a
list node for deletion rather than removing them from the list node immediately (the appropriate
pointer in the array is still set to nil immediately). When performing other operations, we check
for and remove any marked nodes immediately following nodes visited. The total running time is
still linear, though insert operations are no longer constant time operations.

Time complexity: In the first execution each data structure operation can be performed in
O(log(n)) time where |V| = n. There are at most O(m) such operations and O(m) additional time
overhead where |E| = m. Thus, the first execution can be performed in O(mlog(n)) In addition,
it provides us with a relatively simple and illustrative example of the use of a certification trail.

In the second execution each data structure operation can be performed in O(1). There are still
at most O(m) such operations and O(m) additional time overhead. Hence, the second execution
can be performed in O(m) time, i.e., linear time.

Section 6 contains results of timing experiments with this technique.

15

o

L)1)

[

Il

SION J

Ui

wis

L

(0.sm) e (3,60) e (4,130) }— NIL
0 1 2 3 4 5 6
(O,sm) e (3,60) e (5,62) > (4,130) = NIL
0 1 2 3 4 5 6

Figure 4: Example of the indexed linked list before and after inserting (5,62)

16

3.1 Proof of correctness

We wish to prove that the two algorithms given above constitute a certification trajl solution to the
SHORTEST-PATH problem, i.e., that the functions Fi(d) and F3(d, t) defined by these algorithms

— satisfy Definition 2.2. First, we consider the problem of evaluating a sequence of the above data
structure operations.

Definition 5.2 Let D be the set of finite sequences of the data structure operations defined above,
Let S be the set of finite sequences of answers to data structure operations. Let P be the relation

:= (d,s) where d € D'and s ¢ S, and s is the sequence of answers resulting from executing the
operations d starting with the empty set. '

Note that we are examining all finite sequences of data structure operations, not just “legal”
ones. That is, may attempt to perform an insertion with an item number already in use, attempt
to perform deletion on an item number not being used, etc. We assume that if one of these “illegal”
.« OPerations is attempted, the operation will output “error” and terminate processing. Thus, we can
i_f: define the answer sequences for these “illegal” sequences.

Definition 5.3 Let Fi(d) be defined by the result of executing the operations on any of the stan-
=2 dard data structures described above, with the insert(i, z,) and changekey(t, z, k) operations mod-
ified to output trail information. Let F3(d,t) be defined by the result of executing the operations
.. using the indexed linked kst implementation described above.

= Theorem 5.4 Fi(d) and Fy(d,t) meet the conditions of Definition 2.2 (that is, Fi(d) and Fy(d,1)
constitute a certification trail solution for P). A

Proof: We must prove that both conditions of Definition 2.2 are satisfied by these functions.
Part 1: The first conditjon we must verify is that for all d € D there exists s € S and there
exists ¢ € T such that F(d) = (s,t) and Fy(d,t) = s and (d,s) € P. Let (s,1) = Fy(d). The
modifications of the data structure operations that produce trail output do not affect how the data
structure is maintained. Proofs of correctness for the standard data structures are well known, so
~ We may assume (d, s) € P. We must demonstrate that Fy(d,t)=s.)
- This may be proven by showing that after each operation that modifies the set A, the elements
stored in the indexed linked list (our implementation) correspond to the elements in the set 4 (the
abstract definition). We must also demonstrate that if this relationship is maintained, then correct
output is generated by operations that generate output.
To demonstrate this, we show that each operation maintains the following invariants.

U

RIS

i. If the pair (i,z)isin AU (0, “smallest™), then the i-th pointer in the array of pointers points
to the list node containing (i,x).

i
i

LIl
e

ii. If, for some i, there is no pair in h with item number { then the i-th pointer is nil.

ili. The list nodes are in ascending order.

iv. Every list node is pointed to by some pointer in the array. (Together with the first condition,
this implies that it is pointed to by exactly one pointer from the array).

11

e
11

E3 The first two conditions assert that the indexed linked list and the set A contain the same
= elements (ignoring the special list head element in the linked list). The last two invariants allow us
. to demonstrate that the linked list operations function correctly.

p

1

17

te o

I

Clearly each of these conditions is true before the first operation is performed (the set of pairs
is empty, all pointers except the 0-th are nil, and (0, “smallest”) is the only list node).

Assume that the above conditions are satisfied after the first k operations, and that the output
generated by any of the first k operations is correct. We claim that the invariants will will remain
satisfied after the (k+ 1)-st operation, and that if the (k+1)-st operation generates output, it will be
correct. Let s(k + 1) denote the output produced by the (k + 1)-st operation (where Fi(d) = (s,1)).

Consider each possible operation. For brevity, we omit details for “illegal” operations, i.e., those

that violate the precondition of the operation. Similarly, we omit details of the special case of
“smallest” being read from the trail.

insert(7, z, k) The trail t contains the item number J of the predecessor of (i, z). Call the predecessor
(4,¥). By assumption, the i-th pointer is nil before the insert. If not, this operation outputs
“error™ and execution halts. Since the indexed linked list correctly represents k at this point,
this agrees with the result returned by Fi(d), i.e., s(k + 1) = “error”. After the insertion is
performed, the i-th pointer is set to the new node containing (3, z), so the first condition is
satisfied. No other nodes are added to the list, so the second condition will remain true. The
third condition is satisfied since (j, y) is now the immediate predecessor of (i,z). Since no
other pointer in the array has been changed, the fourth condition is still true.

delete(i, k) This operation sets the i-th pointer to nil, and removes the node containing (i,z)
from the list. This satisfies the second invariant. Deleting a node cannot violate the third

invariant. Since no other nodes are removed and no other pointers are changed, the first and
fourth invariants remain satisfied.

deletemin(h) By assumption, the nodes are currently in ascending order. Thus, the minimum
element in A must correspond to the node following the special list head node, call the pair it
contains (i,z). This pair is the correct output for this operation. As with delete, the above
four conditions remain true after this node js removed and the i-th pointer set to nil.

changekey(i, z,h) We have implemented changekey(i, z, k) as an insertion followed by a deletion.
Since both of those preserve the invariants, changekey(i, z, k) must do so as well.

member(i,h) By assumption, the indexed linked list correctly represents h before this operation,
so the output of this operation will be correct. Since this operation does not change the set
or the indexed linked list, the invariants remain satisfied.

predecessor(i, k) By assumption, the indexed link list correctly represents h, and furthermore it is
currently in sorted order. Thus, the list element preceding the node containing (i,z) is the

predecessor. Since this operation changes neither k nor the indexed linked list, the invariants
remain satisfied.

This demonstrates that the first condition of Definition 2.2 is satisfied.

Part 2: The second condition is for all d € D and for all t € T either (F3(d,t) = s and
(d,s) € P) or F3(d,t) = error. Intuitively, this states that if F3(d,t) is passed an arbitrary trail, it
either outputs a correct answer, or it outputs “error”. We prove an even stronger condition. Let
teorrect be the trail returned by Fy(d), i.e., F;i(d) = (8y teorrect). Then either tcorrect i85 a prefix of ¢,
or F3(d,t) = error.

If tcorrect is a prefix of ¢t, then we are done. The algorithm describing F3(d,t) does not examine
any part of the trail after t.,,,.q, 50 F(d,t)=s. '

18

y
L

e
i

1kS

i
i

i

If teorrect is NOt a prefix of ¢, let p be the position at which they first differ. Let O be the number
of the operation that uses the trail data at p. Then operation O is either an insert(i, z,h) or
changekey(i, z, h) operation. If it is an insert operation, then Zcorrect contains the item number of
the predecessor of (i, z). Since ¢ contains a different value, call it j, at this location, the insert(i,z,h)
operation will fail one of it's three checks. Either j will not be valid item number, or the j-th
pointer will be nil, or the pair (j,y) will not be the predecessor of (i,z). The argument for the
changekey(i, z, h) operation is essentially the same.

Thus, the second condition is satisfied.

Therefore, Fy(d) and Fj(d,t) are a certification trail solution to P, the problem of evaluating
data structure operations. |}

Definition 5.5 Let D be the set of finite graphs G = (V, E) with edge weights consisting of positive
integers. Assume the indices are numbered 1 through n. Let S be the set of finite ordered tuples
of positive integers. Let P be the relation that associates each graph with the tuple consisting of
the minimum path lengths to each vertex. Let SPy(d) be the function defined by the SHORTEST-
PATH algorithm with the data structure defined for the first execution. Let SP;(d, t) be the function
defined by the SHORTEST-PATH algorithm using the indexed linked list implementation.

Corollary 5.6 SP;(d) and SP,(d,t) constitute a certification trail solution for P.

Proof: If SP,(d) = (s,t), then the correctness of Dijkstra’s algorithm implies that (d,s) €
P. The algorithms that compute SP;(d) and SP;(d,t) are the same except for data structure
implementation. Theorem 5.4 implies that if these algorithms generate the same data structure
operations, then the same sequence of answers will be generated. Thus, to demonstrate that
SPy(d,t) = s, it must be shown that the same sequence of data structure operations is generated
by both algorithms. Examination of SHORTEST-PATH indicates that the k-th data structure
operation to be performed is dependent only on the input and the result of previous data structure
operations. For example, at line 9, either an insert(i,z,h) or a changekey(i, z,h) is performed,
depending on the result of a member(i,h) operation. The input graph d is identical for both
algorithms, thus the first data structure operation performed must be the same. Assume that the
first k operations performed by both algorithms are identical. Then, by Theorem 5.4, the answers
to those operation will be the same. Since the (k + 1)-st operation depends only on the input and
the results of the previous k operations, it must also be the same for both algorithms. Therefore
the same sequence of data operations is performed in both algorithms, so SP;(d,t) = s.

The proof that the second condition holds is the same as for Theorem 5.4. Either the input trail
t contains the “correct™ trail as a prefix, or one of the data structure operations will fail, resulting
in an “error” output. |

One point has been glossed over in the above proof. In the SHORTEST-PATH algorithm results
of deletemin(h) are not output nor are they stored in the certification trail. It might be possible for
incorrect answers to be returned by deletemin(h) operations while still producing correct shortest
paths and lengths. The second execution of the SHORTEST-PATH algorithm will not detect this
since the correct output is produced. By proving that the answers to deletemin(h) operations are
the same, we have proven more than strictly required.

6 Experimental Data on Certification Trails

We have performed extensive timing experiments on several basic and well-known problems, includ-
ing the ones described in this paper. Algorithms for solving these problems were implemented, both

19

A

]

r

with and without the use of certification trails. Timing data was collected on both the certification
trail solutions and the basic solutions. The following tables summarize these results.

Size | Basic Algorithm First Execution Second Execution | Speedup | Percent

(Also Generates Trail) (Uses Trail) Savings
5000 0.61 0.62 0.07 8.73 43.62
10000 1.33 1.34 0.14 9.56 44.54
25000 3.68 3.68 | 0.36 10.22 | 45.12
50000 7.68 7.74 0.71 10.75 44.94
100000 16.23 16.30 1.43 11.35 45.39
200000 33.93 34.37 2.84 11.94 45.16

Table 2: Convex Hull

Size Basic Algorithm First Execution Second Execution | Speedup | Percent
(Also Generates Trail) (Uses Trail) Savings
10000 0.28 0.30 0.04 7.00 39.29
50000 1.80 1.90 0.19 9.47 41.94
100000 3.96 4.08 0.41 9.66 43.31
500000 23.95 24.69 2.14 11.19 43.99
1000000 50.23 51.57 4.38 11.47 44.31

Table 3: Sort

Size Basic Algorithm First Execution Second Execution | Speedup | Percent

, (Also Generates Trail) (Uses Trail) Savings
100,1000 0.04 - 0.05 0.02 2.00 12.50
250,2500 0.15 0.16 0.06 2.50 26.67
500,5000 0.31 0.33 0.11 2.82 29.03
1000,10000 0.70 0.76 0.23 3.04 29.29
2000,20000 1.58 1.67 045 3.51 32.91
2500,25000 2.06 2.15 0.55 3.75 34.47

Table 4: Shortest Path

The timing information was gathered on Sun SPARCstation ELC with 16MB of RAM. The
system was run as a standalone machine in single user mode during timing experiménts.

Much of the data presented in the timing table is essentially self-explanatory relative to the
certification trail technique and algorithms considered. However, a brief discussion of the table
entries is appropriate.

The column labelled Basic Algorithm contains timing data which gives the execution time of the
algorithm in producing the output without the generation of the certification trail. All timing data
is listed in seconds.

20

L

The First Ezecution column gives the execution time of the algorithm in producing the output
with the additional overhead of generating the certification trail.

The Second Erecution column gives the execution time of the algorithm in producing the output
while using the certification trail.

The Speedup column is the ratio of the run times of the Basic Algorithm and the Secondary
Execution. One reason this figure is important is that it is possible for the two algorithms to run in
different environments (different hardware, programming language, etc). A high speedup indicates
that less powerful hardware or a higher level language (with associated overhead) may be sufficient
for the second execution.

The Percent Savings column records the percentage of the execution time savings which is gained
by using the certification trail method as compared to 2-version programming approach. The time
required for a 2-version programming approach was estimated by doubling the time reported in the
Basic algorithm. This assumes that both versions take approximately the same amount of time to
execute.

In addition to the tables, the timing information for the convex hull algorithm is plotted in
Figure 5. Plots for the other two examples are similar.

Examination of the data collected for the convex hull algorithm indicates that:

o The overhead in generating the certification trail is very small, less than 2% of the running
time of the basic (no certification trail) algorithm.

o The second execution is very fast, achieving an order of magnitude speedup for larger input
sizes. This suggests that a single “second algorithm” process could easily handle the output
generated by several “first algorithm” processes running in parallel. Alternately, the high
speedup would allow the second execution to be run on lower performance (and hence less
expensive) hardward. Finally, the large speedup and reduced code complexity may make it
possible to take advantage of a formally verifiable language (which may require significant
overhead) in implementing the second algorithm.

The data for sorting indicates that the certification trail also requires very low overhead and
results in a large speedup. For the shortest path problem the overhead is still very low, and the
speedup, while not as dramatic as for the first two problems, is still quite respectable.

7 Comparison With Other Techniques

The certification trail approach shares similarities with other valuable fault tolerance and fault
detection techniques that have been previously proposed and examined, but in each case there are
significant and fundamental distinctions. These distinctions are primarily related to the generation
and character of the certification trail and the manner in which the secondary algorithm uses the
certification trail.

First consider the important and useful technique called N-version programming [9, 3]. When
using this technique N different implementations of an algorithm are independently executed with
subsequent comparison of the resulting N outputs. There is no relationship among the executions of
the different versions of the algorithms other than that they all use the same input; each algorithm
is executed independently without any information about the execution of the other algorithms. In
marked contrast, the certification trail approach allows the primary algorithm to generate a trail
of information which can be read by the secondary algorithm. The advantages of utilizing this
additional information are shown in the body of this paper. In effect, N-version programming can
be thought of relative to the certification trail approach as the employment of a null trail.

21

ll [\|m
il il

I

il

] i SR {HIVEE Pt P

Time (seconds)

35 I | { 1 1 1 | { I

30

25

N
o
|

-t
16}
I

10 |-

Basic Algorithm —

Generate Trail -----
Use Trail -----

5} _
0 S DR R 1 1 1] 1 1

O 20 40 60 80 100 120 140 160 180 200
Number of Input Points (Thousands)

Figure 5: Convex Hull Run Times.

Another valuable technique, known as the recovery block approach [2, 18, 21], was proposed by
— Randell. It yses acceptance tests and alternative procedures to produce what is to be regarded as

— some informal sense for correctness. The rigor, completeness, and nature of the acbeptance test
is left to the program designer, and many of the acceptance tests that have been proposed for
Use tend to be somewhat straightforward [2). When using certification trails jt is clearly possible
— to combine the second execution and the comparison test to yield a program which certifies the
correctness of the output of the first execution. Unlike an acceptance test this certifier must satisfy
strict formal properties of correctness. Also note that the certification trajl technique emphasizes

|
[d
-2
o
Y
=)
Y
=
=
[
!<
Q
=~
3
=
®
-y
™
g
=]
oq
e
=
2]
=3
|-
.
o
-y
Y
Conal
[]
g
(4]
[ad
[~
®
o]
o
-
fag
<
=]
o0
]
-y
g
(=¥
(=W
8
=]
[«
-
-
o,
<
w
&
«

of recovery blocks and certification trails.
- Algorithm-based fault tolerance (15, 17, 19] uses error detecting and correcting codes for perform-

|
=
=]
[~ %
I
=]
®
-]
L aal
&
(=}
fa)
[¢°]
-y
Y
fnd
(=]
=
w
[=]
—
[ad
=
o
&
[=}
la)
ot
=a
B
o
)
o
=2
o
R
[1+]
(=9
Ul
]
3
=
=]
Lo
—
S
[ad
g
B
o
£
=23
A
1Y
=
Q
=]
wm
=)
(73
oy
g

I
[=]
[=]
3
g
=]
-\
fal
(=]
=
Q
=
a
=]
8

©
=
Lo
Y
fadl
=]
=]
B
a
]
]
=]
]
»n
&
=
-
o
E
3
o

= work has been followed by a burst of activity in this general area (12, 7, 25, 8, 4]. Each of these

= Papers, however, describes work which differs significantly from the work we present. A program
checker is an algorithm which checks the output of another algorithm for correctness. An early

- example of a program checker is the algorithm developed by Tarjan (23] which takes as input a

= graph and a supposed minimum spanning tree and indicates whether or not the tree actually is a
minimum spanning tree.

E2 The Blum-Kannan program checking method differs from the certification trail method in two

= important ways. First, the checker is designed to work for a problem and not a specific algorithm.
That is, the checker design is based on the input/output specification of a problem and no assump-

—(i.e., the certification trail) which is considered to be usefu] jn the checking/verification process. By
_ exploiting this capability it is sometimes possible to design certification trajl solutions which allow
i _faster checking than Blum-Kannan program checkers. Of course, these faster solutions are more

&2 The second important difference concerns the number of times that the program which is being
checked is executed. In the Blum-Kannan approach the program may be invoked a polynomial

23

i1
1

“H
” ‘ I

‘
TR RO |

Gl

w. b

number of times. In the certification trail approach the program is run only once. Thus, the overall
time complexity of the checking process can be significantly larger for Blum-Kannan checkers.

A third less important difference stems from the fact that Blum-Kannan checkers are defined
in a more general probabilistic context. Certification trails are currently defined only for deter-
ministic programs and checkers. However, it is clearly possible to define them in the more general
probabilistic context.

Other work has been done to extend the ideas of Blum-Kanran to give methods which allow
the conversion of some programs into new programs which are self-testing and self-correcting [12,
7). However, these methods are also based on treating programs as black boxes and thus have
limitations similar to Blum-Kannan program checkers. A recent paper by Blum et al. (8] concerns
checking the correctness of memories and data structures. The results described in that paper
differ from our work using abstract data types in one central way. The checkers that they design
are tightly constrained in memory usage. Typically, they use only O(log(n)) storage to check data
structures of size O(n). Our results do not place space constraints on the algorithm used to certify
the data structure. Without a space constraint we are able to certify abstract data types such as
priority queues which are more complex than the data structures that they check, i.e., stacks and
queues. Also, we are able to achieve a speed up in the checking process and they are not.

Babai, Fortnow, Levin and Szegedy [4] present methods which appear to allow remarkably fast
checking, i.e., in polylogarithmic time. Their approach has some similarities to the methods we
Propose. Both methods modify original algorithms to yield new algorithms which output additional
information. We refer to this additional information as a certification trail and they refer to this
information as a witness. In our case we are interested in modified algorithms which have the same
asymptotic time complexity as the original algorithm. Indeed, the modified algorithm should be
slowed down by at most a factor of two. In (4] the modified algorithm is slowed down by more than
any fixed multiplicative factor. Specifically, if the original algorithm has a time complexity of o(T)
then the modified algorithm has a time complexity of O(T'*¢). Note that in practice the ¢ cannot
be too small because its inverse appears in the exponent of the checker time complexity. Another
difference between our methods is the fact that their method requires that the input and output
be encoded using an error-correcting code. The encoding process takes O(N1*¢) time for strings
of length N. However, many of the checkers we have developed take only linear time so the cost
of simply preparing to use their method appears to be too great in some cases. It is also necessary
to decode the output after the check. Lastly, we note that Fortnow has stated that their result is
currently not practical [24).

8 Generalization and Future Research Areas

The experimental timing data on certification trails indicates that this technique is of great practical
value as well as of theoretical interest. Furthermore, the techniques illustrated are applicable to a
wide range of problems, especially the certification of Abstract Data Types described in the shortest

path example. There are many areas of interest for future exploration, a few of which are described
below. ’

8.1 Certified Data Structure Libraries

It is apparent that the certification trail technique described for the SHORTEST-PATH program
may be used for a variety of problems. Since the certification trail is produced and used by abstract
data type operations, the technique may be used with any algorithm that can be implemented in
terms of those abstract data types. Creating a library of such “certified data types” enables

24

BRI)18

!

!

i

s

o
i

L Jine

L

i

it

L]
il w

{

programmers to create fault tolerant programs without having to be familiar with the certificatjon
trail technique. Object oriented programming appears to be well suited to this task.

A possible objection to this is that it provides fault detection only for the data structure imple-
mentation, since the surrounding code is simply reused. Furthermore, the data structure imple-
mentation is likely to come from library code, and hence be highly reliable. In answer to this note
that:

* In many algorithms, the code using the data structure is much simpler than the code imple-
menting the data structure.

¢ Although the example above illustrated reuse of using the data structures, it is certainly
possible for this code to be developed separately for the first and second execution programs.

¢ Errors are often found even in code that has been in use for a long period of time. The added
confidence of using this technique may be desirable even for library code.

¢ Even if the library code is highly reliable, the certification trail can be helpful in detecting
errors caused by hardware problems.

¢ Library code may have to be tuned or even rewritten to meet for a particular application or
environment, partially negating the claim of using well-tested code.

Even if fault detection is not an issue, the certification trail technique is useful during program
testing and debugging. Input may be automatically generated and processed. If the output of the
first and second executions differ or an error is otherwise flagged, the input set is flagged. This
reduces the need to otherwise compute output for selected input and enables both more and larger
sets of input to be processed. 2-version programming may be used during debugging in a similar
manner, however certification trails have the advantage of reduced overhead, allowing more test
cases to be run, a reduction in the hardware required for testing, or both.

8.2 Almost-concurrent execution of the certification trail

In the above discussion and examples, the certification trail programs have been executed serially,
i.e., we do not run the second execution until after first execution completed. Actually, except for
sorting, the two executions in the examples above can be run almost-concurrently. The “second”
execution simply reads the information from the certification trail as it becomes available. The two
programs will finish nearly simultaneously, the difference being in the time after the last element
is read from or written to the certification trail.

8.3 Continuing after an error

A possible extension to the use of certification trails is to attempt to continue the second execution
after an error s detected. Consider the shortest path example using abstract data types. In
that example, the second execution used an indexed linked list that performed each operation in
constant time by using the certification trail from the first execution. Suppose that an error had
been detected during the second execution. Rather than simply aborting, it may be possible to
continue execution. This could be done by

¢ Reorganizing the existing set into some other data structure (such an AVL tree, red-black
. tree, etc.) that allows efficient operation without a certification trail.

25

Ll

il

LG

il

£

Lis

1
|

it

|

Ll

i

LR]
[

¢ Continuing to use the indexed linked list and ignoring the rest of the certification trail. Note
that this would result in some operations requiring more time.

¢ Continuing to use the indexed linked list and attempting to use the certification trail for future
operations. This may be possible if the error that occurred has sufficiently “local” effect. For
example, if part of a tree structure is corrupted during the first execution, it is still possible
that operations involving other parts of the tree will be performed correctly.

On a related topic, research has been done on “self-correcting™ data structures in which enough
redundancy is built into a data structure so that it may be reconstructed if part of it is corrupted.
Using certification trails with such 'structures could provide an efficient detector for corruption of
the data structure.

References

[1] Adel’son-Vel'skii, G. M., and Landis, E. M., “An algorithm for the organization of informa-
tion”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

[2] Anderson, T., and Lee, P., Fault tolerance: principles and practices, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3) Avizienis, A., “The N-version approach to fault tolerant software,” IEEE Trans. on Software
Engineering, vol. 11, pp. 1491-1501, Dec., 1985. .

(4] Babai, L., Fortnow, L., Levin, L., and Szegedy, M., “Checking computations in polylogarithmic
time, ” Proceedings of the 23rd ACM Symposium on Theory of Computing, pp. 21-31, 1991.

[5] Bayer, R., and McCreight, E., “Organization of large ordered indexes”, Acta Inform., pp
173-189, 1, 1972.

[6] Blum, M., and Kannan, S., “Designing programs that check their work”, Proceedings of the
1989 ACM Symposium on Theory of Computing, pp. 86-97, ACM Press, 1989.

[7] Blum, M., Luby, M., and Rubinfeld, R., “Self-testing/correcting with applications to numerical
problems,” Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 73-83, 1990.

(8] Blum, M., Evans, W., Gemmell P., Kannan, S., and Naor, M., “Checking the correctness of
memories,” Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science
pp- 90-99, 1991

[9] Chen, L., and Avizienis A., “N-version programming: a fault tolerant approach to reliability of
software operation,” Digest of the 1978 Fault Tolerant Computing Symposium, pp. 3-9, IEEE
Computer Society Press, 1978.

[10) Cormen, T. H., and Leiserson, C. E., and Rivest, R. L., Introduction to Algorithms McGraw-
Hill, New York, NY, 1990.

[11] Dijkstra, E. W., “A note on two problems in connexion with graphs,” Numer. Math. 1, PP-
269-271, Sept., 1959.

(12] Gemmell, R., Lipton, R., Rubinfeld, R., Sudan, M., and Wigderson, A., “Self-
testing/correcting for polynomials and for approximate functions,” Proceedings of the 23rd
ACM Symposium on Theory of Computing, pp. 32-42, 1991.

26

“-f'
— N

(13] Graham, R. L., “An efficient algorithm for determining the convex hull of a planar set”,
Information Processing Letters, pp. 132-133, 1, 1972,

(14] Guibas, L. J., and Sedgewick, R., “A dichromatic framework for balanced trees”, Proceedings

of the Nineteenth Annual Symposium on Foundations of Computing, pp. 8-21, IEEE Computer
— Society Press, 1978.

(15] Huang, K.-H., and Abraham, J., “Algorithm-based fault tolerance for matrix operations,”

= IEEE Trans. on Computers, pp. 518-529, vol. C-33, June, 1984.
(16] Johnson, B., Design and analysis of fault tolerant digital systems Addison-Wesley, Reading,
MA, 1989.
[17] Jou, J.-Y. and Abraham, J. “Fault tolerant FFT networks,” Dig. of the 1985 Fault Tolerant
— Computing Symposium, pp. 338-343, IEEE Computer Society Press, June, 1985.
B (18] Lee, Y.H. and Shin, K.G., “Design and evaluation of a fault-tolerant multiprocessor using
.- hardware recovery blocks,” JEEE Trans. Comput., vol. C-33, PP. 113-124, Feb. 1984,

(19] Nair, V., and Abraham, J., “General linear codes for fault-tolerant matrix operations on
— Processor arrays,” Dig. of the 1988 Fault Tolerant Computing Symposium, pp. 180-185, June,

= 1988.
(20] Preparata F. P., and Shamos M. 1., Computational geometry: an introduction, Springer Verlag,
== New York, NY, 1985.
=
[21] Randell, B., “System structure for software fault tolerance,” IEEE Trans. on Software Engs-
neering, vol. 1, Pp. 220-232, June, 1975.
= [22] Siewiorek, D., and Swarz, R., The theory and practice of reliable design, Digital Press, Bedford,
_ MA, 1982. .
< [23] Tarjan, R. E., “Applications of path compression on balanced trees”, J. ACM, pp. 690-715,
Oct., 1979.
& [24] Paul Wallich, “Crunching Epsilon,” Scientific American, PP. 22-24, Jan., 1993
_. [25] Andrew Chi-Chih Yao, “Coherent Functions and Program Checkers,” Proc. 22 ACM Symp. of
= Theory of Computing, pp. 84-94.

I

)

L]
i M\Iii

|
i |

=3

it

o
PRNRIFN

[

Experimental Evaluation of the
Certification-Trail Method

Gregory F. Sullivan,! Dwight S. Wilson,? Gerald M. Masson,>
Mamoru Itoh,* Warren W. Smith, Jonathan S. Kay®

Abstract

Certification trails are a recently introduced and promising
approach to fault-detection and fault-tolerance [1, 2, 3, 4]. In
this paper, we report on a comprehensive attempt to assess ex-
perimentally the performance and overall value of the method.
The method is applied to algorithms for the following problems:
huffman tree, shortest path, minimum spanning tree, sorting,
and convex hull. Our results reveal many cases in which an
approach using certification-trails allows for significantly faster
overall program execution time than a basic time redundancy-
approach.

We also examine algorithms for the answer-validation prob-
lem for abstract data types. This kind of problem was originally
proposed in [3] and provides a basis for applying the certification-
trail method to wide classes of algorithms. We implemented and
analyzed answer-validation solutions for two types of priority
queues. In both cases, the algorithm which performs answer-
validation is substantially faster than the original algorithm for
computing the answers.

Next we present a probabilistic model and analysis which en-
ables comparison between the certification-trail method and the
time-redundancy approach. The analysis reveals some substan-
tial and sometimes surprising advantages for the certification-
trail method.

N94- 36065
1785 7

A |00
P

Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

I

i

L.
)

'Research partially supported by NSF Grants CCR-8910569 and CCR-8908092 and an
IBM Technology Interchange Program Grant.

2Research partially supported by NSF Grant CCR-8910569 and an IBM Technology
Interchange Program Grant.

*Research partially supported by NASA Grant NSG 1442 and an IBM Technology
Interchange Program Grant.

*Visiting Scholar, Matsushita Electronic Components Co.

®Currently at Dept. of Computer Science, University California San Diego

m"!:’ e
ul b v

]

1
i

[

{11
ihLE[HHmL‘

Finally we discuss the work our group has performed on the
design and implementation of fault injection testbeds for experi-
mental analysis of the certification trail technique This work em-
ploys two distinct methodologies: software fault injection (mod-
ification of instruction, data, and stack segments of programs on
a Sun Sparcstation ELC and on an IBM 386 PC) and hardware
fault injection (control, address, and data lines of an Motorola
MC68000-based target system pulsed at logical zero/one values).
Our results indicate the viability of the certification trail tech-
nique. We also believe the tools we have developed provide a
solid base for additional exploration.

Keywords: Software fault tolerance, certification trails, error
monitoring, design diversity, data structures.

1 Introduction

Certification trails are a recently introduced and promising approach to
fault-detection and fault-tolerance [1, 3]. In this paper, we report on a com-
prehensive attempt to assess experimentally the performance and overall
value of the method. We have implemented several fundamental algorithms
together with versions of the algorithms which generate and utilize certifica-
tion trails. Specifically, algorithms for the following problems are analyzed:
huffman tree, shortest path, minimum spanning tree, sorting, and convex
hull. Our results reveal many cases in which an approach using certification
trails allows for significantly faster overall program execution time than a
basic time redundancy approach.

We also examine algorithms for the answer-validation problem for ab-
stract data types. This kind of problem was originally proposed in {3] and
provides a basis for applying the certification-trail method to wide classes of
algorithms. For this paper we implemented and analyzed answer-validation
solutions for two abstract data types. The first solution is for a simplified
priority queue which allows insert, min and deletemin operations, and the
second solution is for a priority queue which allows insert, min, delete and
deletemin operations. In both cases, the algorithm which performs answer-
validation is substantial faster than the original algorithm for computing the
answers.

This paper next presents a simple probabilistic model and analysis which
enables comparison between the certification-trail method and the time-

-

B)

!

redundancy approach. The analysis shows that when the certification-trail
method has a smaller execution time than the time-redundancy approach
it yields strictly superior performance. This means the method has both
a a smaller probability of error and a smaller probability of undetected
error. Surprisingly, the analysis also reveals the intriguing result that the
certification-trail method often can display superior performance even when
the method has the same execution time or a longer execution time than the
time-redundancy approach. This superior behavior stems from the typical
assymetry of the execution times of the first and second executions in the
certification-trail method.

The paper next discusses the work our group has performed on the design
and implementation of fault injection testbeds. This work employs two
distinct methodologies: software fault injection and hardware fault injection.
The software fault injection tool is similar to an interactive debugger but
more accurately can be considered an interactive bugger. It allows programs
to be halted and faults to be injected by direct modification of the stack,
data and instruction segments of a program. Output can then be captured
and characterized.

The hardware fault injector is based on injecting faults into an operating
microprocessor. The injection is performed by explicitly setting one or more
pins of the microprocessor to logical zero and/or logical one values. The
timing and duration of the pin setting is under control of a supervisory
processor. The testbed also includes a multi-processor system. This system
consists of three processors which are connected to one another pairwise by
shared banks of dual ported memory. We plan to use this system to conduct
evaluation of systems which utilize concurrent execution of algorithms using
the certification-trail method.

2 Introduction to Certification Trails

To explain the essence of the certification-trail technique for software fault
tolerance, we will first discuss a simpler fault-tolerant software method. In
this method the specification of a problem is given and an algorithm to solve
it is constructed. This algorithm is executed on an input and the output is
stored. Next, the same algorithm is executed again on the same input and
the output is compared to the earlier output. If the outputs differ then an
error is indicated, otherwise the output is accepted as correct. This software
fault tolerance method requires additional time, so-called time redundancy

Inmv o
bl

m
i

L ifH

!

I { IR

[32, 52]; however, it requires no additional software. It is particularly valu-
able for detecting errors caused by transient fault phenomena. If such faults
cause an error during only one of the executions then either the error will be
detected or the output will be correct. The second possibility, of undetected
faults, occurs when the output of the execution is unaffected by the faults.

A variation of the above method uses two separate algorithms, one for
each execution, which have been written independently based on the problem
specification. This technique, called N-version programming [16, 12] (in
this case N=2), allows for the detection of errors caused by some faults
in the software in addition to those cause by transient hardware faults and
utilizes both time and software redundancy. Errors caused by software faults
are detected whenever the independently written programs do not generate
coincident errors.

The certification-trail technique is designed to obtain similar types of
error-detection capabilities but expend fewer resources. The central idea,
as illustrated in Figure 1, is to modify the first algorithm so that it leaves
behind a trail of data which we call a certification trail. This data is chosen
so that it can allow the the second algorithm to execute more quickly and/or
have a simpler structure than the first algorithm. As above, the outputs of
the two executions are compared and are considered correct only if they
agree. Note, however, we must be careful in defining this method or else
its error detection capability might be reduced by the introduction of data
dependency between the two algorithm executions. For example, suppose
the first algorithm execution contains an error which causes an incorrect
output and an incorrect trail of data to be generated. Further suppose
that no error occurs during the execution of the second algorithm. It still
appears possible that the execution of the second algorithm might use the
incorrect trail to generate an incorrect output which matches the incorrect
output given by the execution of the first algorithm. Intuitively, the second
execution would be “fooled” by the data left behind by the first execution.
The definitions we give below exclude this possibility. They demand that
the second execution either generate a correct answer or signal that an error
has been detected in the data trail.

3 Formal Definition of a Certification Trail

In this section we will give a formal definition of a certification trail and
discuss some aspects of its realizations and uses.

5

oy

First Execution

Certification Trail

Duplicate Compare

Second Execution

Figure 1: Certification trail method.

Definition 3.1 A problem P is formalized as a relation, i.e., a set of ordered
pairs. Let D be the domain (that is, the set of inputs) of the relation P and
let S be the range (that is, the set of solutions) for the problem. We say an
algorithm A solves a problem P iff for all d € D when d is input to A then
an s € S is output such that (d,s) € P.

Definition 3.2 Let P : D — S be a problem. A solution to this problem
using a certification trail consists of two functions Fy and F, with the fol-
lowing domains and ranges F; : D - S x T and F, : D x T — S U {error}.
T is the set of certification trails. The functions must satisfy the following
two properties:

(1) for all d € D there exists s € S and there exists ¢ € T such that
Fy(d) = (s,t) and F(d,t) = s and (d,s) € P
(2)foralde D and forallt € T
either (F3(d,t) = s and (d, s) € P) or F3(d,t) = error.

We also require that F} and F; be implemented so that they map ele-
ments which are not in their respective domains to the error symbol. The
definitions above assure that the error-detection capability of the certification-
trail approach is similar to that obtained with the simple time-redundancy
approach discussed earlier. (That is, if transient hardware faults occur dur-
ing only one of the executions then either an error will be detected or the
output will be correct.) It should be further noted, however, the examples
to be considered will indicate that this new approach can also save overall
execution time.

or Error

"
'

"
|

el

Ll

Throughout this section we have assumed that our method is imple-
mented with software, however, it is clearly possible to implement the method
with assistance from dedicated hardware. The degree of diversity or inde-
pendence achieved when using certification trails depends on how they are
used. A fuller discussion of this and of the relationship between certification
trails and other approaches to software fault tolerance is contained in the
expanded version of [1].

4 Generalized Priority Queue

Before we present our example algorithms which use certification trails we
must discuss the notion of an abstract data type. An abstract data type has
a well defined data object or set of data objects, and an abstract data type
has a carefully defined finite collection of operations that can be performed
on its data object(s). Each operation takes a finite number of arguments
(possibly zero), and some but not all operations return answers.

Some of the algorithms presented in the next section use the priority
queue abstract data type. In addition, later in this paper the answer-
validation problem for two variants of the priority queue are presented.
Therefore, we now describe the priority queue. The data consists of a set
of ordered pairs. The first element in these ordered pairs is referred to as
the item number and the second element is called the key value. Ordered
pairs may be added and removed from the set, however, at all times the item
numbers of distinct ordered pairs must be distinct. It is possible, though,
for multiple ordered pairs to have the same key value. In this paper the item
numbers are integers between 1 and =, inclusive. Qur default convention is
that ¢ is an item number, k is a key value and h is a set of ordered pairs.
A total ordering on the pairs of a set can be defined lexicographically as
follows: (i,k) < (#',k') iff k < k' or (k = k" and i <). The abstract data
types we will consider support a subset of the following operations.

member(¢) returns a boolean value of true if the set contains an ordered
pair with item number i, otherwise returns false.

insert(7, k) adds the ordered pair (i, k) to the set. We require that no other
pair with item number i be in the set.

delete(4) deletes the unique ordered pair with item number 7 from the set.
We require that a pair with item number i be in the set initially.

F I B b

.u
i

LB 1

|

!

(S
INT I

changekey(z, k) is executed only when there is an ordered pair with item
number ¢ in the set. This pair is replaced by (1, k).

deletemin (or deletemax) returns the ordered pair which is smallest (or
largest) according to the total order defined above and deletes this
pair. If the set is empty then the token “empty” is returned.

min (or max) returns the ordered pair which is smallest (or largest) accord-
ing to the total order defined above. If the set is empty then the token
“empty” is returned.

predecessor(7) returns the item number of the ordered pair which immedi-
ately precedes the pair with item number 7 in the total order. If there
is no predecessor then the token “smallest” is returned. We require
that a pair with item number ¢ be in the set initially.

If an operation violates one of the requirements described above then it is
considered to be ill-formed. Also, if an operation has the wrong number or
type of arguments it is considered to be ill-formed.

Many different types and combinations of data structures can be used
to support different subsets of these operations efficiently.

5 Examples of the Certification Trail Technique
with Timing Data

In this section we evaluate the use of certification trails for five well-known
and significant problems in computer science: the convex hull problem, the
minimum spanning tree problem, the shortest path problem, the Huffman
tree problem, and the sorting problem. We have implemented algorithms
for these problems together with other algorithms which generate and use
certification trails.

We provide a full description of the algorithm for the convex hull problem
which generates a certification trail and a full description of the algorithm
which uses that trail. This material has not appeared in our previous publi-
cations [1, 3]. Because of space considerations the discussion of three of the
other algorithms is abbreviated, but references to previous publications or
technical reports which describe the algorithms more fully are given. The
treatment of the sort algorithm is brief but is detailed enough for the inter-
ested reader to implement the certification-trail method.

1

0

Y
il

g

T

!
i

QT

[Ol

The algorithms we have choosen to implement are not always the al-
gorithms which have the smallest asymptotic time complexity. Often the
asymptotically fastest algorithms have large constants of proportionality
which make them slower on the data sizes we examined. We modified and
used some programs from major software distributions such as quicker-sort
from a Berkeley Unix distribution. Other algorithms were based on text-
book discussions. It should be stressed here that this research is exploratory
and we hope to further increase our corpus of algorithm and data-structure
implementations.

5.1 Systems used for timing data

We have collected timing data for the algorithms considered using a Sun
workstation, an IBM 386 PC and a Motorola 68000-based system.

The SUN machine utilized was a SPARCstation ELC with 16 MB of
RAM. The system was run as a standalone machine in single user mode
during the timing experiments. Timing data was obtained through the
getrusage() system call; the user times are reported in the data.

Some of the algorithms were also run on an MSDOS machine: a North-
gate 386/33 with 8MB of RAM. The programs were compiled using DJGPP,
DJ Delorie’s port of the GNU GCC compiler to MSDOS. This compiler uses
a DOS extender to allow programs to run in protected mode; thus nearly all
of the 8MB in the machine was available, thereby allowing data sets com-
parable in size to those used on the Sun. The programs required no change
to run under MSDOS, though the data generators required minor modifi-
cation because the drand48() family of random number generators was not
available.

Finally some of the algorithms were also run Motorola M68000-based
target system. In addition to the MC68000 microprocessor which served as
the cpu, the system was also was comprised of 512K bytes of RAM, 512
bytes of ROM, and numerous I/O modules to support serial and parallel
communication. A timer module is also included in the system which uses
the 4Mhz clock as a reference so as to provide execution time data for
experiments. This system is discussed in Section 10 relative to fault injection
experiments.

DR INTRE |

i

ifd

b

5.2 Explanation of timing data table entries

Much of the data presented in the timing table is essentially self-explanatory
relative to the certication trail technique and algorithms considered. How-
ever, a brief discussion of the table entries is appropriate.

The Basic Algorithm timing data refers to the execution time of the
algorithm in producing the output without the generation of the certification
trail. All timing data is listed in seconds.

The Generate Certif. timing data refers to the execution time of the al-
gorithm in producing the output with the additional overhead of generating
the certification trail.

The Use Certif. timing data refers to the execution time of the algorithm
in producing the output while using the certification trail.

The Compare timing data refers to the time necessary to compare the
outputs from both two Basic Algorithm runs or from a Generate Certifi-
cation Trial run and a Use Certification Trail run. (Obviously, the value
of the comparison would be the same in each case.) For the some of the
experiments, the data was too small to calculate and is therefore listed as
0.00. In other experiments, the comparison was included in the algorithm
execution timing data and therefore is not separately listed.

The Total Basic timing data is twice the Basic Algorithm timing data
plus the Comparison time (when available) so as to evaluate the classical
time-redundancy approach.

The Total Certif. timing data is the sum of the Generate Certif. timing
data and the Use Certif. data and Comparison data (when available) so as
to evaluate the certification trail approach.

The % Savings data is percentage of the execution time savings which is
gained by using the certification trail method as compared to the classical
time redundancy method.

For the Huffman tree data, the input size for the Huffman tree program
is the number of nodes. Each node is given a frequency, chosen uniformly
from the integers {1, 2, ..., n}. n was selected to be the number of nodes,
but in fact it’s value does not affect the running time of the algorithm. In
order for the algorithm to execute correctly, the sum of the frequencies must
not cause an arithmetic overflow. The certification trail method will detect
this.

For the minimum spanning tree and shortest path tables, there are two
numbers associated with the input size, the first is the number of vertices
in the graph, the second the number of edges. A graph with the required

edges is selected uniformly from the set of all such graphs, then tested for
connectedness. The algorithms will function regardless of connectedness,
but allowing graphs that are not connected would introduce undesirable
variation in the timing data.

For the convex hull tables, the input size is the number of points in the
data set. The points are chosen uniformly from the set of points with integer
coordinates between 0 and 30,000.

For the sorting tables, sorting was timed in two ways. The first set of
results were obtained by sorting integers. To generate a trail, an integer tag
is added to each input integer and an array of these pairs passed to the sort
function. After sorting, the "data” integers are placed in an array, and the
“tag” integers are placed on the certification trail. Thus, the sort call looks
the same as a normal sort function. The time to massage the data in this
manner is included in the cost of the call. This method resulted in only
a small speedup, because of the overhead involved in massaging the data,
and because the sort routine must swap pairs of integers instead of single
integers. The integers were chosen uniformly over the range 0 to 1,000,000.

The second method was to sort an array of pointers to structures. In this
case it was assumed that the structure contained a field that would serve
as the tag. The sort program needed only to fill in this field, and not copy
the structures to a second array. This method results in dramatic speedups.
Integer keys were used, though a more complex key will work as well (in
fact, a more complex key is very likely to increase the speedup achieved).

For the priority queue and generalized priority queue tables, the input
size n is the number of commands executed. The item numbers range from
1 to n (ie. there are as many item numbers as there are commands). The
commands are not chosen with equal probability, but rather the first n/2
are weighted toward insert operations while the second half are weighted
toward the other operations, the weightings remaining the same for all runs.
This weighting is necessary in order to force a large queue.

The timing data displayed in the tables should be considered not only
relative to the overall efficiencies of the certification trail method relative
to classical time redundancy but also relative to the probabilistic analysis
given in Section 9 in which we show that when the certification-trail method
has a smaller execution time than the time-redundancy approach it yields
strictly superior performance. This means the certification trail method has
both a a smaller probability of error and a smaller probability of undetected
error.

10

5.3 Convex Hull Example

The convex hull problem is a fundamental one in computational geometry.
Our certification trail solution is based on a solution due to Graham [24]
which is called Graham’s Scan. For basic definitions in computational ge-
ometry see the text of Preparata and Shamos[46]. For simplicity in the
discussion which follows we will assume the points are in so called general
position, e.g., no three points are colinear. It is not hard to remove this
restriction.

Definition 5.1 The conver hull of a set of points, §, in the Euclidean
plane is defined as the smallest convex polygon enclosing all the points.
This polygon is unique and its vertices are a subset of the points in §. It is
specified by a counterclockwise sequence of its vertices.

Figure 2(c) shows a convex hull for the points indicated by black dots.
The algorithm given below constructs the convex hull incrementally in a
counterclockwise fashion. Sometimes it is necessary for the algorithm to
“backup” the construction by throwing some vertices out and then contin-
uing. The first step of the algorithm selects an “extreme” point and calls
it p;. The next two steps sort the remaining points in a way which is de-
picted in Figure 2(a). It is not hard to show that after these three steps the
points when taken in order, py, ps,...,ps, form a simple polygon; although
this polygon may not be convex. It is possible to think of the algorithm
as removing points from this simple polygon until it becomes convex. The
main FOR loop iteration adds vertices to the polygon under construction
and the inner WHILE loop removes vertices from the construction. A point
is removed when the angle test performed at line 6 reveals that it is not on
the convex hull because it falls within the triangle defined by three other
points. A “snapshot” of the algorithm given in Figure 2(b) shows that g¢s
is removed from the hull. The angle formed by g4, ¢s,pe is less than 180
degrees. This means, gs lies within the triangle formed by g4, p1, ps. (Note,
q1 = p1-) In general, when the angle test is performed if the angle formed by
Gm—1,m, Pk is less than 180 degrees then g, lies within the triangle formed
by ¢m-1,p1,px. Below it will be revealed that this is the main fact that
our certification trail relies on. When the main FOR loop is complete the
convex hull has been constructed.

Algorithm CONVEXHULL(S)
Input: Set of points, S, in R?

11

N

l

gl

L]
o

1

!
|

{1l

g

i)

[‘I!!
Iid

Figure 2: Convex hull example.

Output: Counterclockwise sequence of poin‘ts in R? which define convex hull of §

1 Let p; be the point with the largest z coordinate (and smallest y to break ties)

2 For each point p (except p;) calculate the slope of the line through p, and p

3 Sort the points (except p;) from smallest slope to largest. Call them p,,...,p,

4 qr:=p1; @:=p; G3:=p3; m=3

5 FOR k=4ton DO

6 WHILE the angle formed by ¢,,_1, ¢m,px is > 180 degrees DO m := m — 1 END
7 m:=m+1

8 Gm =Pk

9 END FOR

10FOR i = 1 to m DO, OUTPUT(¢;) END FOR
END CONVEXHULL

First execution: In this execution the code CONVEXHULL is used.
The certification trial is generated by adding an output statement within the
WHILE loop. Specifically, if an angle of less than 180 degrees is found in the
WHILE loop test then the four tuple consisting of ¢m, gm—1,P1, P is output
to the certification trail. The table below shows the four tuples of points
that would be output by the algorithm when run on the example in Figure
2. The points in the table are given the same names as in Figure 2(a). The
final convex hull points ¢y,...,qm are also output to the certification trail.
Strictly speaking the trail output does not consist of the actual points in R?.
Instead, it consists of indices to the original input data. This means if the
original data consists of sy, 33,..., 8, then rather than ouput the element in
R? corresponding to s; the number 1 is output. It is not hard to code the
program so that this is done.

12

i

(I

]

tl

|

|

HE

Point not on convex hull Three surrounding points
Ps P4, D1, Ps
P4 D3, DP1,Ps
pr Ps;P1, P8

Second execution: Let the certification trail consist of a set of four
tuples, (z1,a1,b1,¢1), (22, az,b,¢3),.. . (27, a,,b;,¢;) followed by the sup-
posed convex hull, ¢1,¢2,-..,¢n. The code for CONVEXHULL is not used
in this execution. Indeed, the algorithm performed is dramatically different
than CONVEXHULL.

It consists of five checks on the trail data.

e First, the algorithm checks for i € {1,.. .,7} that z; lies within the
triangle defined by a;,b;, and c;.

¢ Second, the algorithm checks that for each triple of counterclockwise
consecutive points on the supposed convex hull the angle formed by
the points is less than or equal to 180 degrees.

o Third, it checks that there is a one to one correspondence between the
input points and the points in {z,...,2,} U {q,.. s qm}-

o Fourth, it checks that for i € {1,...,7}, a;, b;, and ¢; are among the
input points.

e Fifth, it checks that there is a unique point among the points on the
supposed convex hull which is a local extreme point. We say a point
q on the hull is a local eztreme point if its predecessor in the counter-
clockwise ordering has a strictly smaller y coordinate and its successor
in the ordering has a smaller or equal y coordinate.

If any of these checks fail then execution halts and “error” is output. As
mentioned above, the trail data actually consists of indices into the input
data. This does not unduly complicate the checks above; instead it makes
them easier. The correctness and adequacy of these checks must be proven.
Because of space limitations we shall not give the proof here.

Time complexity: In the first execution the sorting of the input points
takes O(nlog(n)) time where n is the number of input points. One can show
that this cost dominates and the overall complexity is O(n log(n)).

13

(I

P |

I |

il

110

il

Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.
10000 0.74 0.79 0.11 0.03 1.51 0.93 38.41
20000 1.65 1.75 0.23 0.06 | 3.36 | 2.05 39.28
50000 4.64 4.79 0.59 0.14 9.42 5.52 41.40
100000 9.95 10.32 1.19 0.28 20.18 | 11.79 41.57
Table 1: Huffman Tree on Sun
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.
10000 1.09 1.32 0.32 0.10 2.28 1.74 23.68
20000 2.38 291 0.63 0.21 4.97 3.75 24.55
50000 7.01 8.80 1.59 0.50 14.52 | 10.89 25.00

Table 2: Huffman tree on 386/33

It is possible to implement the second execution so that all five checks are
done in O(n) time. /papers/certify3/tabdata /papers/certify3/tabdataChecking
that a point lies within a triangle is a geometric calculation that can be done
in constant time. Comparing the angle formed by three points to 180 de-
grees can be done in constant time. The third and fourth checks can be
done in O(n) because the certification trail contains indices into the input
data as described above. The uniqueness of the “local extreme” can also be
checked in linear time.

5.4 Minimum Spanning Tree Example

This classic problem has been examined extensively in the literature and
an historical survey is given in [25]. Our approach is applied to a variant

Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. | Basic | Certif. |]
10000 1.26 1.29 0.13 0.01 | 253 | 143 43.47
20000 2.71 2.81 0.31 001 | 543 | 313 | 4235
50000 | 7.41 7.48 070 | 0.01 |14.83]| 810 | 44.77
100000 | 15.76 | 15.87 1.43 0.01 [31.53] 17.31 | 45.09

Table 3: Convex Hull on Sun

14

il
]

it

[

Ll

(1
i

N

"
i

Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.
10000 1.79 1.88 0.15 ~0.01 3.59 | 2.04 43.18
20000 3.86 4.08 0.31 0.01 7.73 | 4.40 43.08
50000 10.51 11.16 0.78 0.01 21.03 | 11.95 43.18
100000 22.40 23.97 1.64 0.01 44.81 | 25.62 42.83
Table 4: Convex Hull on 386/33
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.
100,1000 - 0.04 0.05 0.01 0.00 0.08 | 0.06 25.00
200,2000 0.10 0.12 0.02 0.00 0.20 | 0.14 30.00
500,5000 0.30 0.31 0.06 0.00 0.60 | 0.37 387.33
1000,10000 0.68 0.72 0.13 0.00 1.36 0.85 37.50
1500,15000 1.10 1.14 0.19 0.00 220 | 1.33 39.55
2000,20000 1.51 1.58 0.27 0.00 3.02 1.85 38.74
2500,25000 1.97 2.00 0.35 | 0.00 3.94 | 2.35 40.36
Table 5: Minimum Spanning Tree on Sun
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.

100,1000 0.04 0.03 0.01 0.00 0.08 { 0.04 50.00
| 200,2000 0.08 0.08 0.02 0.00 0.16 0.10 37.50
500,5000 0.26 0.24 0.06 0.00 0.52 0.30 42.31

1000,10000 0.59 0.56 0.13 0.00 1.18 | 0.69 4153 |
1500,15000 0.93 0.90 0.20 0.00 1.86 1.10 40.86
2000,20000 1.29 1.28 0.28 0.00 2.58 1.56 39.53
2500,25000 1.67 1.65 0.36 0.00 3.34 | 2.01 39.82

Table 6: Shortest Path on Sun
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.

10000 0.23 0.40 0.06 0.01 0.47 0.47 0.00
20000 0.51 0.86 0.13 0.01 1.02 1.00 1.96
50000 1.38 2.35 0.35 0.02 2.78 | 2.72 215 |
100000 2.96 4.97 0.76 0.04 592 | 5.73 3.20

Table 7: Integer sorting on Sun

15

Size Basic Generate | Use | Compare | Total | Total | % Saving |
Algorithm | Certif. | Certif. Basic | Certif.
10000 1.02 1.18 0.14 0.04 2.08 | 1.36 34.62
20000 2.16 2.49 0.29 0.08 440 | 2.86 35.00 |
50000 5.67 6.48 073 | 022 [1156| 7.43 35.73 |
100000 11.74 13.48 1.57 044 [2392| 1549 | 3524 |
Table 8: Integer Sort on 386/33
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm [Certif. | Certif. Basic | Certif.
10000 0.32 0.33 0.03 0.01 0.65 | 0.37 43.07 |
20000 0.71 0.72 0.07 0.01 143 | 0.80 44.05
50000 1.97 1.99 0.18 0.02 3.96 | 2.19 44.69
100000 4.32 4.37 0.38 0.05 8.69 | 4.80 44.76
Table 9: Pointer sorting on Sun
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.)
10000 1.08 1.15 0.07 0.03 219 | 1.25 | 42.92
20000 2.41 2.41 0.16 0.07 489 | 2.64 | 46.01
50000 6.37 6.38 0.42 0.22 12.96 | 7.02 45.83
100000 13.29 | 13.33 0.89 043 | 27.01| 1465 | 45.76
Table 10: Pointer Sort on 386/33
Size Basic Generate | Use | Compare | Total | Total | % Saving
Algorithm | Certif. | Certif. Basic | Certif.
10000 0.86 0.83 0.14 0.01 1.73 | 0.98 43.35
20000 1.92 1.87 0.28 0.01 3.85 | 2.16 43.89
50000 5.32 5.37 069 | 0.02 10.64 | 6.08 42.85 |

Table 11: Data structs on Sun

16

Size Basic Generate | Use Total | Total | % Saving
Algorithm | Certif. | Certif. | Basic | Certil.
8 0.075 0.091 | 0.026 | 0.151 | 0.117 28.7
16 0.215 0.248 | 0.054 | 0.430 | 0.302 42.4
32 0.561 0629 | 0.111 | 1.122 | 0.740 51.6
64 1.330 1.468 | 0.224 | 2.660 | 1.692 57.2
128 3.120 3.398 0.450 | 6.240 | 3.848 62.2
256 7.225 7.783 | 0.903 | 14.450 | 8.686 66.4
512 | 16.270 17.388 | 1.808 | 32.540 | 19.196 | 69.5
Table 12: Huffman Tree on 68000-based system
Size Basic Generate | Use Total | Total | % Saving
Nodes | Edges | Algorithm | Certif. | Certif. | Basic | Certif.
10 15 0.053 0.054 | 0.055 | 0.106 | 0.109 2.5
10 | 20 0.071 0.072 | 0.073 | 0.142 | 0.145 1.7
10 25 0.088 0.080 | 0.090 | 0.176 | 0.179 -1.5
50 75 0.320 0.323 | 0.309 | 0.639 | 0.632 1.2
50 100 0.423 0.427 | 0.400 | 0.846 | 0.826 2.3
50 125 0.492 0.496 | 0.464 | 0.984 | 0.960 2.5
100 150 0.652 0.658 | 0.602 | 1.305 | 1.260 3.6
100 200 0.874 0881 | 0.789 | 1.748 | 1.671 4.6
100 250 1.036 1.045 | 0938 | 2.073 | 1.983 4.5
500 750 3.588 3.617 3.047 | 7.176 | 6.664 7.7
500 | 1000 4.780 4817 | 3.955 | 9.560 | 8.772 9.0
500 | 1250 5.656 5608 | 4.717 | 11.311 | 10.415 8.6
1000 | 1500 7.474 7.533 | 6.115 | 14.949 | 13.649 9.5
1000 | 2000 9.902 9.977 | 7.919 | 19.803 | 17.895 10.7
1000 | 2500 11.830 11.917 | 9.517 | 23.660 | 21.434 10.4
1500 | 2250 11.415 11.503 | 9.157 | 22.830 | 20.660 10.5
1500 | 3000 14.967 15.077 | 11.802 | 29.933 | 26.879 11.4

Table 13: Min Spanning Tree on 68000-based system

17

l

i

i

i

I

Il

il

I

(R

of the Prim/Dijkstra algorithm [47, 18] as explicated in [54]. We provide a
definition of the problem below. For more information on the graph theoretic
terminology used in this problem and others the reader may consult [54, 17].

Definition 5.2 Let G = (V, F) be a graph and let w be a positive rational
valued function defined on E. A subtree of G is a tree, T(V',E'), with
V' CVand E'C E. Wesay T spans V' and V' is spanned by T. If V/ = V
then we say T is a spanning tree of G. The weight of this tree is 3¢ w(e).
A minimum spanning tree is a spanning tree of minimum weight.

The problem is to input a graph with edge weights and output a mini-
mum spanning tree. The algorithm for this problem which has the fastest
asymptotic time complexity uses fusion trees and is given in [20]. This al-
gorithm however appears to have a large constant of proportionality. Other
asymptotically fast algorithms [22] also appear to be handicapped by large
constants of proportionality. A fuller discussion of the two algorithms we
employ for generation and use of a certification trial is given in [1].

5.5 Shortest Path Example

This is another classic problem which has been examined extensively in the
literature. Our approach is applied to a variant of the Dijkstra algorithm
[18] as explicated in [54]. We are concerned with the single source problem,
i.e., given a graph and a vertex s, find the shortest path from s to v for
every vertex v.

The algorithm for this problem which has the fastest asymptotic time
complexity uses fusion trees and is given in the same paper which we cited
earlier when considering the minimum spanning tree problem[20]. This al-
gorithm however appears to have a large constant of proportionality. Our
solution employing the certification trail method is very closely based on the
solution we gave for the minimum spanning tree problem [1].

5.6 Huffman Tree Example

This is another old algorithmic problem and one of the original solutions
was found by Huffman[30]. It has been used extensively to perform data
compression through the design and use of so called Huffman codes. These
codes are prefix codes which are based on the Huffman tree and which
yield excellent data compression ratios. The tree structure and the code
design are based on the frequencies of individual characters in the data to

18

L

I

i |

N

|
i

)

1y
u

Wit

I

(R

ui

LI

be compressed. Here we are concerned exclusively with the Huffman tree.
See [30] for information about the coding application.

Definition 5.3 The Huffman tree problem is the following: Given a se-
quence of frequencies (positive integers) f[1], f(2],..., f[r], construct a tree
with n leaves and with one frequency value assigned to each leaf so that
the weighted path length is minimized. Specifically, the tree should mini-
mize the following sum: 3~ .1 gar len(i) f[i] where LEAF is the set of leaves,
len(4) is the length of the path from the root of the tree to the leaf l;, f[i] is
the frequency assigned to the leaf I;.

The method we employ to generate and use a certification trail is detailed
in the following technical report [2].

5.7 Sorting Example

This important problem has a massive literature. In this section we will
discuss how to apply the certification trail approach to the sorting problem.
Let us assume that the sorting algorithm takes as input an array of n ele-
ments and outputs an array of n elements. The algorithm is supposed to
place the data into non-decreasing order.

To design a certification trail algorithm we must discover the nature of
the data that should be included in the certification trail to allow quick
computation of the final output sorted array. Suppose that we decide to
use the output array itself as the certification trail. We note that it is easy
to check that this array is in non-decreasing order by simply performing a
single pass over the array. Unfortunately, it is considerably more difficult to
make sure that this array contains exactly the same elements as the original
input array. Indeed, this problem has a lower bound time complexity of
f2(nlog(n)) in a comparison based model.

Because of this difficulty we use the permutation of the elements defined
by the input and output data arrays as the certification trail. To compute
this permutation we allocate a new array of size n called permute which
is initialized by setting its ith element to i. (Alternatively, we add a new
field to pre-existing structures when structures are being sorted.) Each time
the sort algorithm exchanges two elements the corresponding elements in
the permute array are also exchanged. (If structures are being used then
this happens automatically.) This approach works with all sort algorithms
which are based on exchanging array elements. The code below shows how

19

He

g g

L

i

the permute array is used to rapidly recompute the final sorted output array
and how the permute array itself is checked.

Algorithm SORT USING TRAIL
Input: Arrays indata[l..n] and permute[l..n]
Output: outdata[l..n] containing the data in indata sorted into non-decreasing order

The first part of the algorithm checks that the permute values are in the
proper range and constructs the output array.

1 FORi:=1ton DO

2 IF permute(i] > n or permute[i] < 1

3 THEN OUTPUT(“Error: not a permutation”) STOP
4 ELSE outdata[] := indata[permute[s]]

5 END FOR

The next part of the algorithm checks that the output array is properly
ordered.

6 FOR::=2ton DO

7 IF outdata[i — 1] > outdata[i] THEN OUTPUT(“Error: decreasing value”) STOP

8 END FOR

The final part of the algorithm checks that the permute array defines a
proper permutation, i.e., each element is mapped to exactly one element.

9 FOR i:=1to n DO present[:] = FALSE END
10 FOR ¢:=1ton DO
11 IF present[permute[:]] = TRUE

12 THEN OUTPUT(“Error: not a permutation”) STOP
13 ELSE present[permute[¢]] := TRUE
14 END FOR

END SORT USING TRAIL

Our experimental work on the Sun was based on a variant of quicksort
[26] which is called quickersort [50]. The implementation of this algorithm
that we used was provided by a Berkeley UNIX software distribution for
the Sun. Our experimental work on the IBM PC was based on a quicksort
algorithm implemented as part of a Gnu library of functions.

20

!
i

i

6 Answer-Validation Problem for Abstract Data
Types

The next few sections of this paper are concerned with the answer-validation
problem for abstract data types. This kind of problem was originally pro-
posed in [3] and provides a basis for applying the certification-trail method
to wide classes of algorithms. Because of space limitations we will not discuss
the details of how this can be done.

Below, we define the answer-validation problem. Next, we give two ex-
ample algorithms for the answer-validation problems. The first algorithm
is for a priority queue which allows insert, min and deletemin operations.
The second algorithm is for a priority queue which allows insert, min, delete
and deletemin operations. In the next section experimental data on the
execution times of these algorithms is presented.

For each abstract data type we define an answer-validation problem. In-
tuitively, the answer validation problem consists of checking the correctness
of a sequence of supposed answers to a sequence of operations performed on
the abstract data type. More formally, the input to the answer-validation
problem is a sequence of operations on the abstract data, type together with
the arguments of each operation. In addition, the sequence contains the
supposed answers for each of the operations which return answers. In par-
ticular, each supposed answer is paired with the operation that is supposed
to return it. Examples of such inputs are given in the columns labelled
“Operation” and “Answer” table 15.

The output for the answer-validation problem is the word “correct” if
the answers given in the input match the answers that would be generated
by actually performing the operations. The output is the word “incorrect”
if the answers do not match. It is also useful to allow the output word to
say “ill-formed”. This output is used if the sequence of operations is ill-
formed, e.g., an operation has too many arguments or an argument refers
to an inappropriate object.

The answer-validation problem is similar to the idea of an acceptance
test which is used in the recovery-block approach [48, 6] to software fault
tolerance. The main difference is that an answer-validation problem is de-
pendent upon a sequence of answers, not Just an individual answer. Hence,
if an incorrect answer appears in the sequence, it may not be detected imme-
diately. Tt is guaranteed, however, that an incorrect answer will be detected
at some point during the processing of the entire sequence. By allowing

21

|

Ll

e
i

m
ki il

il

(il

for this latency in detection, it is possible to create a much more efficient
procedure for solving the answer-validation problem.

The most important aspect of the answer-validation problem is that it
is often possible to check the correctness of the answers to a sequence of
operations much more quickly than actually calculating what the answers
should be from scratch. In other words, the answer-validation problem has a
smaller time complexity than the original abstract-data-type problem. This
speedup is very useful in fault-detection applications.

It is possible to run an answer-validation algorithm for some abstract
data type concurrently with some algorithm which uses the abstract data
type. The answer-validation algorithm could act as a monitor making sure
that all interactions with the abstract data type are handled correctly. This
is valuable because many algorithms spend a large fraction of their time
operating on abstract data types. Note, the overhead of this monitor is less
than the overhead of actually performing the data-type operations a second
time.

7 Answer Validation for Priority Queue

We will first consider the priority-queue abstract data type which allows
only three operations: insert, min and deletemin. An example of a sequence
of such operations appears in table 14. Many different data structures can
be used to implement priority queues including heaps [61]; and balanced
search trees such as AVL trees [5], red-black trees [27], or b-trees [13]. Tt
is possible to process a sequence of O(n) operations in O(nlog(n)) time
using the data structures above. Furthermore, there is a lower bound of
(nlog(n)) because it is possible to sort using a priority queue. Remark-
ably, the answer-validation problem can be solved using only O(n) time, as
documented below.

The algorithm which we present in this section is the same as that given
in [3]. It is necessary to include a description of this algorithm because the
algorithm in the next section (which has not appeared before) builds on this
algorithm.

Each operation is time-stamped, i.e., the operations are assigned integers
sequentially starting with 1 which is easy to do with a counter. The answer-
validation algorithm uses a stack called answerstack. The contents of this
stack are illustrated in table 14. The top of the stack is on the left in table 14.

Let us consider the kinds of tests that an answer-validation algorithm

22

]

i

I

Time Operation
1 insert(6,300)
2 insert(2,404)
3 insert(3,250)
4 deletemin
5 insert(10,248)
6 insert(12,245)
7 insert(4,260)
8 min

9 insert(13,140)
10 insert(5,142)

11 deletemin

12 deletemin

13 deletemin

14 deletemin

15 deletemin

Answer

(3,250)

(12,245)

(13,140)
(5,142)
(12,245)
(10,248)
(4,260)

Insert time

3

6

~N O = QO

Stack used in validation

(3,250,4)

(12,245,8), (3,250,4)

(13,140,11), (12,245,8), (3,250,4)
(5,142,12), (12,245,8), (3,250,4)
(12,245,13),(3,250,4)
(10,248,14),(3,250,4)

(4,260,15)

Table 14: Sequence of Priority Queue operations illustrating answer valida-

tion algorithm

23

n
il 1 il

TR

LIIEI
\.ﬂHuL]}:A

!
i

HM‘ !
I dil

il I} [‘\’.

for a priority queue might perform. Suppose (i,k) is the answer to some
min or deletemin operation. Further, suppose (i’,k’) was the answer to a
previous min or deletemin operation. If the priority queue is correct then
either (i,k)>(i",k’) or (i,k) was inserted after the answer (i’ k') was given. **
multiple insertions possible?* This suggests that the time of insertion for an
element and the time of an answer should be recorded and the algorithm
below does this. Unfortunately, if an algorithm compares an ordered pair
which has been given as an answer against all previous answers then the
algorithm complexity is at least O(m?). To avoid this a stack called the
answerstack is used. The answerstack was designed to allow many compar-
isons to be done implicitly and thus the overall complexity of the many tests
is reduced.

Algorithm for Answer Validation for Priority Queue

Input: Sequence of m operations together with arguments and supposed
answers for the priority-queue data type.
Output: “correct”, “incorrect” or “ill-formed”

Declarations: Array called inserttime indexed by item number. Array ele-
ments contain either “absent” or a time-stamp. Array called keyvalue in-
dexed by item number. Array elements contain either “absent” or a key
value. Initially, each element in these two arrays contains “absent”. Stack
of ordered triples called answerstack. Each ordered triple has the following
form: first element is an item number, second element is a key value, and
third element is a time-stamp. answerstack is initially empty.

First phase: In this phase we process each operation as it appears serially
using the following rules:

Let currenttime refer to the time-stamp of the operation being processed.

insert(i,k): If inserttime[i]#“absent” then output “ill-formed” and stop.
Otherwise, let inserttime[i] = currenttime and let keyvalue[i]=k.

min (i,k): (where (i k) is the supposed answer to the deletemin oper-
ation.) If inserttime[i]=“absent” or keyvalue[i]#k then output “ill-formed”
and stop.

Otherwise, let (i',k’) be the item number and key value of the triple on
the top of answerstack (if there is one). Repeatedly pop the stack until
(i,k)<(",k") or until answerstack is empty.

If answerstack is empty then push the triple (i,k,currenttime) onto an-
swerstack and process the next priority queue operation.

24

e

If answerstack is non-empty then let the top element be (i’,k’,answertime’).
If inserttime[i]<answertime’ then output “incorrect” and stop. Otherwise,
push the triple (i,k,currenttime) onto answerstack and process the next pri-
ority queue operation.

deletemin (i,k): (where (i,k) is the supposed answer to the deletemin
operation.) Perform the same actions as those described for the min opera-
tion. However, just before processing the next priority queue operation, let
inserttime[i]=“absent” and let keyvalue[i]=“absent”.

Second phase: In this phase we operate on the items which have been
inserted but have never been deleted.

Scan the array inserttime and for each item number for which inserttime[i]# “absent”
construct an ordered triple (i,keyvalue[i],inserttime[i]). Call this set of or-
dered triples remainders.

Use a bucket sort to sort the triples in remainders by their time-stamps, i.e.,
the third element of the ordered triple.

Merge the triples in remainders together with the triples in answerstack so
that they are all ordered by their time-stamps, i.e., the third element of the
ordered triple.

Scan the combined triples to determine if there exist two triples which satisfy
the following: inserttime[i]<answertime’ and (i,keyvalue[i])<(i’,k’); where
one triple is from remainders and has the form (i,keyvalueli],inserttime[i])
and where the other triple is from answerstack and has the form (i’ ,k’,answertime’);

If these two triples exist then output “incorrect” and stop. Otherwise output
“correct” and stop.

Theorem 7.1 The algorithm for answer validation of the priorily queue
abstract data type is correct.

Theorem 7.2 The answer validation algorithm for priority queue has a
time complezity of O(n) for processing a sequence of O(n) operations.

For proofs of these theorems see [3].

25

Ji

d
|

C

[
et

IR
e

I

i R

o
it

L

Il

B

il

P
L

i 18

"
il

1

8 Answer Validation for Generalized Priority Queue

We next consider the priority-queue abstract data type which allows four
operations: insert, min, deletemin, and delete. An example of a sequence of
such operations appears in table 15.

The algorithm to solve the validation problem for this data type is an en-
hanced version of the algorithm given above for the data type which allowed
only three priority-queue operations.

Algorithm for Answer Validation for Generalized Priority Queue

Input: Sequence of m operations together with arguments and supposed
answers for the priority-queue data type.
Output: “correct”, “incorrect” or “ill-formed”

Declarations: All the declartions used in the earlier algorithm are used again.
In addition, a collection of sets called stacksetsare used. Each set in stacksets
consists of a set of item numbers (possibly the empty set). There is a one-to-
one correspondence between the sets in stacksets and the ordered triples in
answerstack. Initially, answerstack consists solely of the ordered triple (0,-
00,-1). Also initially, stacksets contains exactly one set which is the empty
set and which corresponds to (0,-00,-1).

First phase: In this phase we process each operation as it appears serially
using the following rules:

Let currenttime refer to the time-stamp of the operation being processed.

insert(i,k): Perform the same actions as those given earlier for the insert
operation. In addition, add the item number i to the set in stacksets corre-
sponding to the top element in answerstack.

min (i,k): (where (i,k) is the supposed answer to the deletemin opera-
tion.) Perform the same actions as those given earlier for the min operation.
In addition, if any elements are popped off of answerstack then the sets in
stacksets corresponding to these elements are unioned together to form a
new set. This new set is placed in correspondence with the new top element
of answerstack.

deletemin (i,k): (where (i,k) is the supposed answer to the deletemin
operation.) Perform the same actions as those given for the min opera-
tion described immediately above. In addition, remove the item number
i from the set in stacksets which contains it. Further, before processing

26

[

|

i

Lo

o
I T

oy Em

Time Operation
1 insert(5,310)

2 insert(6,210)
3 insert(8,280)
4 min

5 insert(9,190)
6 min

7 insert(2,275)
8 delete(8)

9 insert(12,170)
10 insert(14,400)
11 deletemin

12 insert(3,290)
13 insert(7,330)
14 insert(15,200)
15 delete(9)

16 deletemin

17 delete(7)

18 deletemin

19 delete(14)

Table 15: Sequence of Priority Queue operations illustrating answer valida-

tion algorithm

Answer

(6,210)

(9,190)

(12,170)

(15,200)

(6,210)

Insert time

14

13

10

27

Stack used in validation

(12,170,11),

(12,170,11),
{3},
(12,170,11),
{3.7},
(12,170,11),
{3,7,15},
(12,170,11),
{3,7,15},

(0,-00,-1)
{5}
(0,-00,-1)
{56}
(0,-00,-1)
{5,6,8)
(6,210,4)
{5,6,8}
(6,210,4)
{5.6,8,9}
(9,190,6), (6,210,4)
{5,6,8,9}
(9,190,6), (6,210,4)
{2}, {5,6,8,9}
(9,190,6), (6,210,4)
{2}, {5,6,9}
(9,190,6), (6,210,4)
(212}, {569}
(9,190,6), (6,210,4)
{2.12,14}, {5,6,9}
(9,190,6), (6,210,4)
{214}, {569}
(9,190,6), (6,210,4)
{2,14}, {5,6,9}
(9,190,6), (6,210,4)
(2,14}, {56,9}
(9,190,6), (6,210,4)
(2,14}, {5,6,9}
(9,190,6), (6,210,4)
{2,14}, {5,6}
(15,200,16), (6,210,4)
{2,3,7,14}, {5,6}
(15,200,16),(6,210,4)
{2,3,14), = {5,6}
(6,210,18)
{2,3,5,14}
(6,210,18)
{2,3,5}

(=]

]

ol

21111
b i b

I

il

)y
li

.,

1

the next priority queue operation, let inserttime[i]=“absent™ and let key-
valueli]=“absent”.

delete(i): If inserttime[i]=“absent” or keyvalue[i]=“absent™ then output
“ill-formed” and stop.

Otherwise, let inserttime=inserttimel[i] and let k=keyvalue[i]. Next, let
inserttime[i]="“absent” and let keyvalue[i]=“absent”.

Now, let (i’,k’,answertime’) be the ordered triple which corresponds to
the set in stacksets containing item number i. Next, remove item number i
from the set which contains it.

If answertime’>inserttime and (i,k)>(i’,k’) then output “incorrect” and
stop.

If answertime’>inserttime and (i,k)<(i’,k’) then process the next priority
queue operation.

If (i’,k’,answertime’) is the top element of answerstack then process the
next priority queue operation.

Let (i”,k”,answertime”) be the element immediately above (i’ ,k’,answertime’)

on answerstack.
If (i,k)>(i"” k") then output “incorrect” and stop. Otherwise, process the
next priority queue operation.

Second phase: In this phase we operate on the items which have been
inserted but have never been deleted.

For this phase one performs the same operations as the second phase de-
scribed earlier.

Theorem 8.1 The algorithm above for answer validation of the priority
queue abstract data type is correct.

Theorem 8.2 The answer validation algorithm above for priority queue has
a time complezity of O(n) for processing a sequence of O(n) operations.

Proofs omitted for space reasons. It is clear that a priority queue with
operations insert, delete, max, deletemax can also be validated in linear time
by changing the appropriate signs in the algorithm above.

Definition 8.3 Consider a sequence of priority queue operations together
with arguments and supposed answers. The sequence may contain the
following operations: insert, delete, min, deletemin, max, and deletemax.

28

(I

i

Bl

i

i

(R

Based on this sequence we define a new sequence called a minimum sequence.,
This sequence differs from the original sequence as follows: Each max op-
eration and answer pair is removed from the sequence. Each deletemax
operation and answer pair is replaced by a delete(i) operation where i is the
item number given in the answer to the deletemax operation. Each other
operation remains the same,

We also define a mazimum sequence. This sequence differs from the
original sequence as follows: Each min operation and answer pair is removed
from the sequence. Each deletemin operation and answer pair is replaced
by a delete(i) operation where i is the item number given in the answer to
the deletemin operation. Each other operation remains the same.

Theorem 8.4 Consider a sequence of priority queue operations together
with arguments and supposed answers. The sequence may contain the fol-
lowing operations: insert, delete, min, deletemin, maz, and deletemaz. The
answers given for this sequence are correct if and only if the answers given
for the corresponding minimum and mazimum sequences are both correct.

This theorem allows us to define an algorithm which solves the answer-
validation problem for general priority queue.

9 Probabilistic Model

We will now present a simple probabilistic model with accompanying analy-
sis which will permit a comparison between of our certification-trail method
and the classical time-redundancy approach [32, 52]. The analysis shows
that when the certification-trail method has a smaller execution time than
the time-redundancy approach it yields strictly superior performance. This
means the certification trail method has both a a smaller probability of er-
ror and a smaller probability of undetected error. Surprisingly, the analysis
also reveals the intriguing result that the certification-trail method often can
display superior performance even when the method has the same execution
time or a longer execution time than the time-redundancy approach. This
superior behavior stems from the typical assymetry of the execution times
of the first and second executions in the certification-trail method.
We make the following assumptions.

1. Errors are distributed exponentially with parameter .

29

LI LLLY
Aol

LIl
Nt

"
'

I |

il

Cl

|y
It

RN
ks 1

l‘. i

ii. If errors occur during only one phase of the execution, then they are
detected.

iii. If errors occur in both phases of an execution they are not detected.

For solutions to a problem with run times a and b, we therefore have:

Pr{correct} = e ?ath)
Pr{detected} = e (1 - e) ¢+ e (1 - e™*%)
e 4 =M _ go=Aa+b)
Pr{undetected} = (1-e **)(1-¢e??)
= 1~ e—/\a _ e—Ab + e—A(u-{-b)
= 1~ Pr{correct} — Pr{detected)

Given two solutions for a problem, we say that the first is strictly superior
to the second iff:

Pri{correct} > Pry{correct} and Pri{undetected} < Pry{undetected)
or
Pri{correct} > Pry{correct} and Pri{undetected} < Pry{undetected}

This implies that the run time of the first solution is no greater than
that of the second solution.

Observation 1 Suppose there are two solutions (using certification trails)
to a problem, such that each solution runs in two phases, and the combined
run times of phases is the same for both solutions. Then the solution with
the greater time imbalance between phases is strictly superior.

Proof: Let 2¢ = the run time . Let a + b the run length of the first
phase of the first method, and a + ¢ be the run time of the first phase of
the second method. Then the second phases have times of @ — b and a — c
respectively. Assume b < c. '

Since the total run time is the same for both solutions, we have Pri{correct} =

Pry{correct} = 7322, 50 we need only show that Pry {detected} < Pry{detected),
ie.

30

hl.

]
I

it

XD

LI

LY

e—k(a+b)(1 _ e—)\(a—b)) + e—)\(a—b)(l _ e—/\(a+b)) <
e—)\(a-{»b) +e—)\(a—b) < e—)\(a-{-c) +e—)\(a—c)
<

e—/\b + e/\b e-—)\c +e)\c

Setting z = e* and y = e** we want

1 1
z+—- < y+4 - forl1<z<y
z ¥
1 1
——-= < y-z
z Yy
y—z
v < y-—-r

Corollary 1 Given a basic algorithm for a problem, a certification trail
method is superior to running the basic algorithm twice if the total run time
is no greater than twice that of the basic algorithm.

The above statements apply to the situation of a single execution of a
solution. A more interesting case is to iterate the solution until no errors are
reported, that is we either arrive at the correct answer, or have undetected
€TTOrS.

Let Prj.,{correct} denote the probability of finding a correct solution
in the iterated scheme and Prj.,{undetected} denote the probability of
accepting an incorrect run.

Note that we repeat a run only when errors are detected, so if we obtain
the correct answer on the n — th run, the previous n — 1 runs must have
resulted in detected errors. Thus it is clear that:

Prii.{correct} = Pr{correct} Z Pr{detected}
=0
Pr{correct}
1 — Pr{detected}

Similarly,
Pr{undetected}

1 — Pr{detected}

Priter {undetected} =

31

e—/\(a-i-c)(l _ e—/\(a—c)) + e—)\(a—-c)(l _ e—/\(a-{-c))

cir

"
i ill Hx] W

!

I

1
)

Ul

i

it

il

Il
I

]
U

|

For the iterated scheme, we will say that one method is superior to
another if the probability of obtaining the correct answer is larger. Obviously
if a method is superior in the single run sense, it must be superior in the
iterated case. However it is possible for one method to be superior to another
in the iterated scheme, but not in the single run scheme. This means that
a certification trail method may be better than running a basic algorithm
twice, even if the certification trail takes longer to run!

Suppose we have a basic algorithm A with running time a for a particular
problem, and a certification trail method with phases running in times b and
¢. Given b, how small must ¢ be, for the certification trail to be superior?

We require:
Pr correct
1= Pc::;{t {dete ctl d) > Prygsic{correct}] — Pryy. {detected)
e—Ab+c) e—A2a
1~ e —e=he { e+~ 1~ 2e-2a 4 2¢-22a

e~ Mbte) _ 92e—Matbtc) S e~Ma _ e~ M2a+b) _ e—A(za + C)

E—AC(e—/\b + e~*% _ Qe—A(a-{-b)) > e—AZa(l _ e—-)\b)

Note that b > a, so €™ 4 =228 _ 9o=Ma+b) et he positive. So,

e—Ac e-—AZa(l _ e-—z\b)
e—/\b + e—Aa(l _ E_’\b)
1 —A2a] — e—Ab
c < —=1In c (1-e7)

p) e—b + e—,\2a(l - e—/\b)

Since the argument to In is strictly between 0 and 1, cis well defined for
any choice of a, b, and A.

In addition to the probability of correctness, we would like to know the
expected running time using the iterated approach. Fortunately, this is
easily determined.

Our probability of stopping on a particular execution is Pr{correct} +
Pr{undetected} = 1 — Pr{detected}. Therefore with that probability we
stop on the first execution, with probability Pr{detected}(1— Pr{detected})
we stop on the second execution, and in general we stop on the nth execution

with probability (1 — Pr{detected})(Pr{detected})*~!. This gives us an
expected number of iterations of,

32

o o]

(1 — Pr{detected}) Z(z + 1)Pr{detected)’

=0

-

Now,

] . . 1

=0

so we find that the expected number of iterations is,

1
1 — Pr{detected}

Multiplying the run time of a single iteration will give us the expected
running time.

Table 16 shows information for running a basic algorithm. The run time
of a basic algorithm is set to 1 unit of time. The basic algorithm is run
twice and the results compared, we assume that comparator is fast enough
so that the time it takes is negligible (this is justified by the experimental
results), and that it is error free. We compute

i

ii.

iii.

Prob. Correct - The probability that both phases are error free.

Prob. Detected - The probability that exactly on of the phases contains
an error.

Prob. Undetected - The probability that both of the phases contain

eIToTS.

. Iterated Prob Correct - If the basic algorithm is iterated (each itera-

tion is two runs), this is the probability that the terminating result is
correct.

Expected Runtime - The expected run time of the algorithm in the
iterated model. For the basic algorithm this is twice the expected
number of iterations.

Tabel 17 illustrates the “breakeven” point for the certification trail ap-
proach. Given a value for A and a run time b of a trail generating algorithm.
The breakeven point for the run time of the trail checking algorithm is the

33

Il
i

l,y\ ! ,‘u
.l

il

B |

Liil

Ll

g}

(A [rmo|

{ I

A Basic Prob Prob. Prob. Iter. Expected
Algorithm | Correct | Detected | Undetected Prob. Runtime
Correct

0.01 1 0.980199 | 0.019702 0.000099 0.999899 | 2.040197
0.10 1 0.818731 | 0.172213 0.009056 0.989060 | 2.416081
1.00 1 0.135335 | 0.465088 0.399576 0.253005 | 3.738935

Table 16: Balanced Probabilites

XA | Generate Trail | Breakeven Trail Checker
0.01 1.10 0.909050
0.01 1.50 0.666111
0.01 2.00 0.498750
0.10 1.10 0.908683
0.10 1.50 0.661128
0.10 2.00 0.487505
1.00 1.10 0.905504
1.00 1.50 0.614107
1.00 2.00 0.379885

Table 17: Certification checker breakeven points

point at which the iterated probability of correctness is the same as for the
“basic” algorithm (which has a run time of 1).

Run times less than this will result in the certification trail solution being
superior. It is interesting to notice that in the total length of the solution at
the breakeven point is greater than 2, ie. running the basic algorithm twice.

Table 18 is similar to the first one, the difference being that this examines
the behavior of certification trail methods for different run times of the two
phases. The meaning of the other columns is identical to the meaning in the
table for basic algorithms. Of interest is the row A = 1.00,b = 1.50,¢ = 0.25.
Compare this with the first table for A = 1.00. We see that the certification
method has a greater probability of being correct for a single run and the
total run time is shorter than twice the basic algorithm, yet the expected
iterated run time is larger!

10 Fault Injection Experiments

A series of hardware fault injection experiments have been conducted during
which combinations of the address, data, and control lines of a Motorola

34

i

E.:
-

I | re L ENNEE |

o

A Generate Use Prob Prob. Prob. ITter. Expected

Certif. Certif. Correct Detected | Undetected Prob. Runtime

Correct

0.01 1.10 0.25 0.986591 | 0.013382 | 0.000027 | 0.999972 | 1.368311
0.01 1.10 0.50 | 0.984127 | 0.015818 | 0.000055 0.999945 | 1.625716
0.01 1.10 0.75 0.981670 | 0.018248 | 0.000082 0.999917 | 1.884387
0.01 1.50 0.25 0.982652 | 0.017311 0.000037 | 0.999962 | 1.780827
0.01 1.50 0.50 | 0.980199 | 0.019727 | 0.000074 0.999924 | 2.040248
0.01 1.50 0.75 | 0.977751 | 0.022138 | 0.000111 0.999886 | 2.300937
0.01 2.00 0.25 0.977751 | 0.022199 0.000049 0.999949 | 2.301082
0.01 2.00 0.50 | 0.975310 | 0.024591 0.000099 | 0.999899 | 2.563028
0.01 2.00 0.75 | 0.972875 | 0.026977 | 0.000148 | 0.999848 | 2.826245
0.10 1.10 0.25 | 0.873716 | 0.123712 | 0.002572 0.997065 | 1.540590
0.10 1.10 0.50 | 0.852144 | 0.142776 | 0.005080 | 0.994074 | 1.866490
0.10 1.10 0.75 | 0.831104 | 0.161369 | 0.007527 | 0.991025 | 2.205976
0.10 1.50 0.25 | 0.839457 | 0.157104 | 0.003439 | 0.995920 | 2.076175
0.10 1.50 0.50 | 0.818731 | 0.174476 | 0.006793 | 0.991771 | 2.422703
0.10 1.50 0.75 | 0.798516 | 0.191419 | 0.010065 0.987553 | 2.782653
0.10 2.00 0.25 | 0.798516 | 0.197008 | 0.004476 | 0.994426 | 2.802021
0.10 2.00 0.50 | 0.778801 | 0.212359 | 0.008841 0.988776 | 3.174033
0.10 2.00 0.75 | 0.759572 | 0.227330 | 0.013098 | 0.983049 | 3.559087
1.00 1.10 0.25 0.259240 | 0.593191 0.147568 0.637254 | 3.318513
1.00 1.10 0.50 | 0.201897 | 0.535609 0.262495 0.434755 | 3.445370
1.00 1.10 0.75 | 0.157237 | 0.490763 | 0.352000 | 0.308770 | 3.632888
1.00 1.50 0.25 | 0.173774 | 0.654383 | 0.171843 | 0.502793 | 5.063409
1.00 1.50 0.50 0.135335 | 0.558990 0.305674 0.306876 | 4.535047
1.00 1.50 0.75 | 0.105399 | 0.484698 | .0.409903 | 0.204539 | 4.366374
1.00 2.00 0.25 | 0.105399 | 0.703338 | 0.191263 | 0.355283 | 7.584379
1.00 2.00 0.50 | 0.082085 | 0.577696 | 0.340219 | 0.194374 | 5.919905
1.00 2.00 0.75 | 0.063928 | 0.479846 0.456226 0.122902 | 5.286897

Table 18: Unbalanced Probabilites

35

C -1

me
Nindie a

Wi

g

wl

il

i)

M68000-based target system were pulsed with selected signals of various
types and durations while in the process of executing algorithms. In addition
to the MC68000 microprocessor which served as the cpu, the target also was
comprised of 512K bytes of RAM, 512 bytes of ROM, and numerous 1/0
modules to support serial and parallel communication. A timer module is
also included in the target which uses the 4Mhz clock as a reference so as
to provide execution time data for experiments. Finally, a simple operating
system is resident in the ROM of the target which provides programming
and operational support.

The fault injection testbed on which these experiments were performed is
illustrated as the configuration shown in Figure 3. In addition to the target
system, the fault injection testbed contains other modules which perform
the fault injection and data acquisition functions under instruction from
the Operations Control Console. By means of RS232C, SCSI, and GPIB
interfaces, a Macintosh IICX serves as the Operations Control Console per-
mitting fault injections to be precisely executed and resulting error data to
be recorded for later analysis by a SUN SPARCstation 2.

The Operations Control Console also communicates over a VM Ebus with
the Testbed Controller which is responsible for overall testbed operation.
The primary component of the Testbed Controller is a MC68030-based unit
with 8 Mbytes of SRAM to store error data from fault injection runs as
communicated to it over the VMEbus from the data acquisition module.
The Testbed Controller also is similarly responsible for the operations of
the fault injection module as determined by commands from the Operations
Control Console.

The fault injection module and the data acquisition module have access
via edge connector pins to the lines of the target system selected for injection
and monitoring, respectively. The fault injections are precisely triggered af-
ter some operator determined delay following the appearance of an operator
pre-selected set of bits on either the address lines of the address bus or the
data lines of the data bus. Similarly, the durations and frequencies of the
injections are also controlled by the operator. The injections emanate from
a bank of programmable function generators included in the fault injection
module. The precision with which fault conditions are triggered and injected
permits the resulting error conditions which are observed to be repeated (if
necessary) for further monitoring/analysis. The data acquisition module is
also triggered by the same address or data bits that activated the fault injec-
tion module. However, there is no delay associated with the data acquisition
function; transfer of the signals on the lines being monitored by the data

36

1!

LI
'

U

Ll

t

"
i

0

1 A

l

S

acquisition module to the memory of the Testbed Controller commences
immediately the data acquisition module’s activation. Data monitored by
the data acquisition module is transmitted directly onto VME bus and then
written into the SRAM of the Testbed Controller.

10.1 Fault injection and error classification in MC68000 tar-
get system

To generally indicate the details of the fault injection experiments using the
target system, the injections and resulting errors can be summarized and
displayed at the Operations Control Console as illustrated in Figure 4.

In the example illustrated in Figure 4, the trigger address for the injection
was selected by the operator to be address 1019E (hexadecimal) in the first
version of Huffman tree program which was to generate both the output
and the certification trail. The actual injection consisted of holding the
lower 4 bits of the data bus at logical zero starting 2 microseconds after
the recognition of the trigger address by the fault injection module and
then maintaining the logical zero on these lines for various durations lasting
between 1 and 10 microseconds. For this example, we see that 5 distinct
error conditions resulted depending on the duration of the injection. The
details of data errors classified as type 2 and type 3 are beyond the scope of
this discussion. Suffice it to say that each such type of data error observed
in this particular experimental run could be interpreted as an inconsistent
labeling of nodes in the certification trail passed to the second program. In
each case, however, it should be emphasized that the execution of the second
program utilizing the certification trail detected the error. The other errors
listed in Figure 4 can be categorized as address errors and illegal instructions.

Our purpose in presenting Figure 4 is only to illustrate an example of
a fault injection run with a subsequent error analysis and classification. In

“general, the errors resulting from injections into the target system could be

classified as:
e No error.
e Data output errors
o Certification trail errors
¢ Addressing errors

e Data value errors

37

it

LIRS

| "
I Wl

pn:

0

1
|

L]

Testbed
Controller

VMEbus

Fault Data
CoStFr,'oBller Injection Acquisition
Module Module
GPIB
Function Target
Generator (68000-based)
Operations
Control Console
(Macintosh) RS-232C

SCSI

Error
Analyzer
(SUN)

Figure 3: Hardware fault injection testbed for MC68000-based target system

374‘

Fault Delay Width Error
E._ XXXX Xxx0 0 us .1 us no error
= 2 no error
.3 no error
.4 ADDR TRAP ERROR
£ .5 ADDR TRAP ERROR
1 ADDR TRAP ERROR
2 ADDR TRAP ERROR
s 4 ADDR TRAP ERROR
~— 4.5 ADDR TRAP ERROR
5 data_._e;ror: 2
_ Certification Error: Inconsistent Labels
) 5.5 data_error.2
- Certification Error: Inconsistent Labels
6 data_error.3
Certification Error: Inconsistent Labels
= 7 data_error.3
Certification Error: Inconsistert Labels
8 data_error.3
Certification Error: Inconsistent Labels
- 9 data_error.3
' - Certification Error: Inconsistent Labels
S 10 ILLEGAL INSTRUCTION
= Figure 4: Example of output displayed at Operations Control Console for
fault injection run for Huffman tree algorithm program
%g
=
= 38

[

rw no

¢ Halt generated

Reset generated

¢ Non-termination of program

¢ Program mutilation

I

1
|

Currently, the testbed tools are being expanded to produce automated
injections using suites of fault conditions on the target system.
£ Software fault injection experiments were also performed in which in-
- structions, data, and stack contents were modified using both the Sun Sparc-
station and the 386 machine with which the previously detailed timing data
was collected. The details of these fault injection experiments will be pre-
sented in a companion document.

I

"
i

11 Concluding Discussion

=
=
==
-

This paper experimentally supplements two previous FTCS papers [1, ?]
which theoretically explore the new fault tolerance technique referred to as
the certification trail method. We have presented experimental timing data
which illustrates the advantages of the certification trail technique over clas-
sical time redundancy. We have further presented analytical results which
further support the significance of the certfication trail technique.

= References

[1] Sullivan, G.F., and Masson, G.M., “Using certification trails to achieve
software fault tolerance,” Digest of the 1990 Fault Tolerant Computing
Symposium, pp. 423-431, IEEE Computer Society Press, 1990.

= [2] Sullivan, G.F., and Masson, G.M., “Using certification trails to achieve

- software fault tolerance,” Department of Computer Science Technical
o Report JHU 89/26, Johns Hopkins University, Baltimore, Maryland,
= 1989.

[3] Sullivan, G.F., and Masson, G.M., “Certification trails for data struc-
tures,” Digest of the 1991 Fault Tolerant Computing Symposium, pp.
240-247, IEEE Computer Society Press, 1991.

40

]

PRECEDING PAGE BLANK NOT FILMED

By

I I

(4] Sullivan, G.F., and Masson, G.M., “Certification trails for data struc-
tures,” Department of Computer Science Technical Report JHU 90/17,
Johns Hopkins University, Baltimore, Maryland, 1990.

(5] Adel’son-Vel'skii, G. M., and Landis, E. M., “An algorithm for the or-
ganization of information”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

[6] Anderson, T., and Lee, P., Fault tolerance: principles and practices,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[7] Andrews, D., “Software fault tolerance through executable assertions,”
Rec. 12th Asilomar Conf. Circuits, Syst., Comput., pp. 641-645, 1978,
Nov. 6-8.

(8] Andrews, D., “Using excutable assertions for testing and fault toler-
ance,” Dig. 9th Annu. Int. Symp. Fault Tolerant Comput., pp. 102-105,
1979, June 20-22.

[9] Avizienis, A., “Fault tolerance by means of external monitoring of com-
puter systems,” Proceedings of the 1981 National Computer Conference,
pp. 27-40, AFIPS Press, 1980

[10] Avizienis, A., “Design diversity - the challenge of the eighties,” Digest
of the 1982 Fault Tolerant Computing Symposium, pp. 44-45, IEEE
Computer Society Press, 1982,

[11] Avizienis, A., and Kelly, J., “Fault tolerance by design diversity: con-
cepts and experiments,” Computer, vol. 17, pp. 67-80, Aug., 1984.

[12] Avizienis, A., “The N-version approach to fault tolerant software,”
IEEE Trans. on Software Engineering, vol. 11, pp. 1491-1501, Dec.,
1985.

[13] Bayer, R., and McCreight, E., “Organization of large ordered indexes”,
Acta Inform., pp 173-189, 1, 1972.

[14] Blough, D., and Masson, G., “Performance analysis of a generalized
concurrent error detection procedure,” IEEE Trans. on Computers vol.
39, Jan., 1990.

[15] Blum, M., and Kannan, S., “Designing programs that check their
work”, Proceedings of the 1989 ACM Symposium on Theory of Com-
puting, pp. 86-97, ACM Press, 1989.

41

il

o

!

g

I

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]

Chen, L., and Avizienis A., “N-version programming: a fault toler-
ant approach to reliability of software operation,” Digest of the 1978
Fault Tolerant Computing Symposium, pp. 3-9, IEEE Computer Society
Press, 1978.

Cormen, T. H., and Leiserson, C. E., and Rivest, R. L., Introduction to
Algorithms McGraw-Hill, New York, NY, 1990.

Dijkstra, E. W., “A note on two problems in connexion with graphs,”
Numer. Math. 1, pp. 269-271, Sept., 1959.

Eifert, J.B., and Shen, J.P., “Processor monitoring using asynchronous
signatured instruction streams,” Dig. [{th Int. Conf. Fault-Tolerant
Comput., pp. 394-399, 1984, June 20-22.

Fredman, M. L., and Willard, D. E., “Trans-dichotomous algorithms for
minimum spanning trees and shortest paths,” Proc. 31st IEEE Foun-
dations of Computer Science, pp. 719-725,1990.

Fredman, M. L., and Saks, M. E., “The cell probe complexity of dy-
namic data structures,” Proc. 21st ACM Symp. on Theo. Comp. 1989,
pp. 109-122, 2, 1986.

Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E., “Efficient algo-
rithms for finding minimum spanning trees in undirected and directed
graphs,” Combinatorica 6, pp. 109-122, 2, 1986.

Gabow, H. N., and Tarjan, R. E., “A linear-time algorithm for a special
case of disjoint set union,” J. of Comp. and Sys. Sci., 30(2), pp. 209-
221, 1985.

Graham, R. L., “An efficient algorithm for determining the convex hull
of a planar set”, Information Processing Letters, pp. 132-133, 1, 1972,

Graham, R. L., and Hell, P., “On the history of the minimum spanning
tree problem,” Ann. Hist. Comput., pp. 43-47, Jan., 1985.

Hoare, C. A. R., “Quicksort,” Computer Journal, pp. 10-15, 5(1), 1962.

Guibas, L. J., and Sedgewick, R., “A dichromatic framework for bal-
anced trees”, Proceedings of the Nineteenth Annual Symposium on
Foundations of Computing, pp. 8-21, IEEE Computer Society Press,
1978.

42

g

)

weown o ey e

gl

1

{

i r

[

[28] Gunneflo, U., Karlsson, J., and Torin, J., “Evaluation of error detection
schemes for using fault injection by heavy-ion radiation,” Dig. of the
1989 Fault Tolerant Computing Symposium, pp. 340-347, June, 1989.

[29] Huang, K.-H., and Abraham, J., “Algorithm-based fault tolerance for
matrix operations,” IEEFE Trans. on Computers. pp. 518-529, vol. C-33,
June, 1984.

[30] Huffman, D., “A method for the construction of minimum redundancy
codes”, Proc. IRE, pp 1098-1101, 40, 1952.

[31] Iyengar, V.S. and Kinney, L.L., “Concurrent fault detection in micro-
programmed control units,” IFEE Trans. Comput., vol. C-34, pp. 810-
821, Sept. 1985.

[32] Johnson, B., Design and analysis of fault tolerant digital systems
Addison-Wesley, Reading, MA, 1989.

[33] “Fault tolerant FFT networks,” Dig. of the 1985 Fault Tolerant Com-
puting Symposium, June, 1985.

[34] Kane, J.R. and Yau, S.S., “Concurrent software fault detection,” IEEE
Trans. Software Eng. , vol. SE-1, pp. 87-99, March 1975.

[35] Komlos, J., “Linear verification for spanning trees”, Proceedings of the
1984 Symposium on Foundations of Computing, pp. 201-206, IEEE
Computer Society Press, 1984.

[36] Lee, Y.H. and Shin, K.G., “Design and evaluation of a fault-tolerant
multiprocessor using hardware recovery blocks,” TEEE Trans. Comput.,
vol. C-33, pp. 113-124, Feb. 1984.

[37] Lu, D., “Watchdog processor and structural integrity checking,” IEEE
Trans. Comput., vol. C-31, pp. 681-685, July 1982.

[38] Mahmood, A., Lu, D.J. and McCluskey, E.J., “Concurrent fault detec-
tion using a watchdog processor and assertions,” Proc. 1983 Int. Test
Conf.,, pp. 622-628, Oct., 1983.

[39] Mahmood, A. Ersoz, A. and McCluskey, E.J., “Concurrent system level
error detection using a watchdog processor,” Proc. 1985 Int. Test Conf.,
pp- 145-152, Nov., 1985.

43

P OB

I

il

i1

i

O O

|

i

U

o
1

n

A

(40] Mahmood, A., and McCluskey, E., “Concurrent error detection using
watchdog processors - a survey,” IEEE Trans. on Computers, vol. 37,
pp. 160-174, Feb., 1988.

[41] Mahmood, A., and McCluskey, E., “Concurrent error detection using
watchdog processors”, IEEE Trans. on Computers, vol. 37, pp. 160-174,
Feb., 1988.

[42] Nair, V., and Abraham, J., “General linear codes for fault-tolerant
matrix operations on processor arrays,” Dig. of the 1988 Fault Tolerant
Computing Symposium, pp. 180-185, June, 1988.

[43] Namjoo, M., and McCluskey, E., “Watchdog processors and capability
checking,” Digest of the 1982 Fault Tolerant Computing Symposium,
pp. 245-248, IEEE Computer Society Press, 1982.

[44] Namjoo, M. “Techniques for concurrent testing of VLSI processor op-
eration,” Dig. 1982 Int. Test Conf., pp. 461-468, Nov., 1982.

[45] Namjoo, M. “CERBERUS-16: An architecture for a general purpose
watchdog processor,” Dig. Papers 13th Annu. Int. Symp. Fault Tolerant
Comput., pp. 216-219, June, 1983.

(46] Preparata F. P., and Shamos M. 1., Computational geometry: an intro-
duction, Springer-Verlag, New York, NY, 1985.

[47] Prim, R. C., “Shortest connection networks and some generalizations,”
Bell Syst. Tech. J., pp. 1389-1401, Nov., 1957.

(48] Randell, B., “System structure for software fault tolerance,” [EEE
Trans. on Software Engineering, vol. 1, pp. 220-232, June, 1975.

(49) Schmid, M., Trapp, R., Davidoff, A., and Masson, G., “Upset exposure
by means of abstraction verefication,” Dig. of the 1982 Fault Tolerant
Computing Symposium, pp. 237-244, June, 1982.

[50] Sedgewick, R., “Implementing quicksort programs,” Communications
of the ACM, pp. 847-857, 21(10), 1978.

(51] Shen, J.P. and Schuette, M.A., “On-line self-monitoring using signa-
tured instruction streams,” Proc. 1983 Int. Test Conf.,, pp. 275-282,
Oct., 1983.

44

e
kil IMLA W

ivi

!
i

Ci

i
[

M

[52] Siewiorek, D., and Swarz, R., The theory and practice of reliable design,
Digital Press, Bedford, MA, 1982.

[53] Sridhar, T. and Thatte, S.M., “Concurrent checking of program flow in
VLSI processors,” Dig. 1982 Int. Test Conf., pp. 191-199, Nov., 1982.

[54] Tarjan, R. E., Data Structures and Network Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[55] Tarjan, R. E., “Efficiency of a good but not linear set union algorithm,”
J. ACM, 22(2), pp. 215-225, 1975.

[56] Tarjan, R. E., “A class of algorithms which require nonlinear time to
maintain disjoint sets,” J. of Comp. and Sys. Seci., 18(2), pp. 110-127,
1979.

[57] Tarjan, R. E., and Leeuwen, J. van, “Worst-case analysis of set union
algorithms,” J. ACM, 31(2), pp. 245-281, 1984.

[58] Tarjan, R. E., “Applications of path compression on balanced trees”,
J. ACM, pp. 690-715, Oct., 1979.

[59] Tomas, S. P. and Shen, J. P., “A roving monitoring processor for detec-
tion of control flow errors in multiple processor systems,” Proc. IEEE
Int. Conf. Comput. Design: VLSI Comput., pp.531-539, Oct., 1985.

[60] Taylor, D., “Error Models for robust data structures,” Dig. 20th Annu.
Int. Symp. Fault Tolerant Comput., pp. 416-422, 1990 June 26-28.

[61] Williams, J. W. J, “Algorithm 232 (heapsort),” Commun. of ACM,
vol.7, pp. 347-348, 1964.

[62] Yau, S.S, and Chen, F.-C., “An approach to concurrent control flow
checking,” IEEE Trans. Software Eng., vol. SE-6, pp. 126-137, March
1980.

45

R

i

L

APPENDIX A

DATA ACQUISITION
MODULE
TECHNICAL MANUAL
Ver. 1.0

[”H\ I
we

i

Mul Il 1\!”

i

| el

om

I

il

o

i

I

THE TABLE OF CONTENTS

1. The Experimental System Overview

1.1 System Configuration
1.2 General System Description

1.3 System Customization
2. Data Acquisition Module

2.1 Hardware Overview

2.2 Clock Control

2.3 Address Generator

2.4 Address Bus Buffers and Address Modifier Selector
2.5 Data Transfer Control

2.6 Input Channel Selector and Data Bus Buffers

2.7 VMEbus Master Control

3. Interface Signals

3.1 VMEDbus Interface
3.2 Input Channels

Appendix A Schematic Diagrams
Appendix B Parts List
Appendix C DAM Board Layout

Appendix D Copies of Data Sheets

[t !

bl
Ll sid o

B

(i

il

i

It

vt

| [

I

"
[

e

i
il

o

0!

1. The Experimental System Overview

This system provides an experimental environment for recording and ana-
lyzing upset data in computer systems. This chapter provides the information
on the system configuration and general hardware description.

1.1 System Configuration

This experimental system is mainly based on the VMEbus and controlled
by the 68030 CPU board. The VMEbus provides a master-slave, asyn-
chronous non- multiplexed data transfer medium. The target system (CPU
Under Test) and the Fault Injection Module are connected by its local bus.

Fig.1.1 shows the experimental configuration. This system’s features in-
clude:

¢ 68030 CPU Board
Up to 8 Mbyte SRAM Memory Modules

Floppy Disk and SCSI Bus Controller (FDC/SCSI)

80 Mbyte Hard Disk and 3.5” Floppy Disk Drive

0S-9 Operating System

Chassis with power supply, cooling fans, and motherboard

Data Acquisition Module
CPU Under Test (MC68000 Educational Computer Board)

Fault Injection Module
(GP-IB I/F Controller)
¢ (SUN SPARCstation)

{

i

1 T M

Ui

r
b

ey

L ' H PO B

L

"y
i

TP

"

1!

‘;a
I

Ll

O L AN
E EWS E SUN
Terminal X SPARCstation
CPU E GP-1B,;
(MC-68030) : 1/F |
‘------l------' VMEbus
SRAM }- DAM FDC/ HDD
' SCS1 (80 k¥byte)
(Up to 8Mbyte) — FDD
(3.57)
cCuT FIM
RS-232C (MC-68000) Chassis

DAX: Data Acquisition Module

CUT: CPU Under Test (Target System)

FIM: Fault Injection Module

Fig.1.1 Experimental Configuration

1.2 General System Description

- This section briefly describes the general description of each module of the
experimental system. For detailed information, refer to the user’s manuals
on specific modules.

e 68030 CPU Board

- — SYS68K/CPU-33XN (Force Computers Inc.)
— 68030 CPU with 16.7 MHz clock frequency.
— Not equipped with the Floating Point Coprocessor.
~ — 32-bit high speed DMA controller for data transfers.
— 1 Mbyte of shared dynamic RAM.
- Two multiprotocol serial I/O channels.
— Up to 2 Mbyte EPROM and up to 512 Kbyte SRAM/EEPROM.
— Real Time Clock with calendar and on-board battery backup.
— Full 32 bit VMEbus master/slave interface.

o Memory Module
- - SYS68K/SRAM-6 (Force Computers Inc.)
- 2 Mbyte SRAM on SRAM-6.
- ~ Battery backup for SRAM devices.
] " _ 55ns(typical) Read/Write Access Time.
-— — Jumper selectable access address and address modifier code.

N — VMEDbus intereface supporting 32 data and 32 address lines.
- ¢ Floppy Disk and SCSI Bus Controller

_ SYS68K/ISCSI-1 (Force Computers Inc.)

— 68010 CPU for local control.

- — 68450 DMA Controller for local transfers.

- — SCSI bus interface with the NCR5386S SCSI bus controller.

o
("

L

m
ke

ot

"
b

vl

i

ol

l I wue e

— SHUGART compatible floppy interface with the WD1772 FDC.
— All I/O signals available on P2 connector.
— VMEbus interface supporting A24:D16, D8.

e Mass Storage Module

— SYS68K/MSM-84 (Force Computers Inc.)
— Only VME P1 backplane is required.
— 64 Pin flat cable is used to connect P2 of the ISCSI-1.
~ Floppy Disk Driver (Toshiba ND352)
* Disk Size and Capacity: 3.57, 1.0 Mbyte

* Number of Tracks: 160
* Access Time: 79 ms (average)

— Hard Disk (Quantum PROS8O0S)

» Disk Size and Capacity: 3.5”, 84 Mbyte
* Number of Cylinders and Heads: 834, 6

* Seek Time: 19 ms (average)
¢ 0S-9 Operating System

— Professional 0S-9 (Microware Systems Corporation)

— Multitasking, real time operating system.

— UNIX-like shell and a hierarchical directory/file structure.
— C Compiler, Assembler/Linker, and User-state Debugger.
— uMAQCS screen-oriented text editor.

o Chassis with power supply, cooling fans, and motherboard

- SYS68K/TARGET-32 (Force Computers Inc.)
— 19", 7U chassis.
— 500 W power supply to drive VMEbus and mass storage memory.

— Cooling systems with four fans.
~ 20 slot J1-J2 VMEbus Motherboard.

KR
1 hd

o

i

I

o
Ii i

B

L

Al
&

[
l\" I

I

o

h [TFT

S|

e Data Acquisition Module

— Up to 8 Mbyte address space.

— Jumper selectable address modifier code.

~ 32 Input Channels with data selectors.

— VMEbus compatible data transfers supporting A24:D32, DS.
~ VMEbus Master bus control (Non-slot 1)

e CPU Under Test

— MC68000 Educational Computer Board (Motorola Inc.)
-~ 4 MHz MC68000 16-bit CPU.
— 32 Kbyte of DRAM and 16 Kbyte firmware ROM/EPROM mon-

itor.

= Two serial ports provided for a terminal and a host.
¢ Fault Injection Module

— Hardware fault injections on IC pin lines.

— Single/multiple faults of stuck/bridging types with fault duration
varying from 250 ns to gs. &4 5.

— Application program generated fault injection.

oI

i

I vy
.

L
i

1.3 System Customization

This section describes the system customization required to implement
the upset analysis experimental system. This also provides information on
the programming of peripherals.

o SYS68K/CPU-33XN

— 05-9/68000' EPROM Installation
* Remove VMEPROM? and install EPROMs for 0S-9.
* High — Socket J6, Low — Socket J4
— EPROM Type Selection
*+ 27512 EPROM
* Jumperfield B1: 1t0 12,6 to 7
— Interfacing PI/T2 User 1/0O Port
* Device: MC68230 Parallel Interface/Timer (PI/T)

* Accessible via the 8-bit local I/O bus. Table 1.1 shows the
register layout of PI/T2.

* User I/O port is available on P2 of VMEbus, shown in Table
1.2,

— The Address Map

* The address map of this CPU board is listed in Table 1.3.
* A24: D32, D24, D16, D8 area: SRAM-6, ISCSI-1

o SYS68K/SRAM-6

— Address Modifier Selection

* Standard Supervisor/Non-privileged Data Access
* Address Modifier Code: 3D, 39
* Jumperfield B4: 4 to 15, 2 to 17

— VMEbus Interface

* A24: D32, D16, D8
* Standard Address Mode (A24)

n
!

e

il

| AR

sl

i

e

m

+« Address: $XX000000 — $XX2000000 (2 Mbyte)
+ Jumperfield B3: 18 to 15, 20 - 30 to 13 - 3

o SYS68K/ISCSI-1

~ Address Modifier Selection
+ Standard Non-priviledged/Supervisory program and data Ac-

CeSS.

+ Address Modifier Code: 3A, 39, 3E, 3D
* Jumperfield B22: 5 to 2, 6 to 1

— VMEbus Interface
x A24: D16, D8

« Address: $XXA00000 — $XXALFFFF (128 Kbyte)
« Jumperfield B21: 210 17,4 - 7 to 15 - 12

Table 1.1 PI/T2 Register Layout

ADDRESS | REGISTER

DESCRIPTION

FF800E00 | PIT2 PGCR
FF800EO1 | PIT2 PSRR
FF800E02 | PIT2 PADDR
FF800E06 | PIT2 PACR
FF800E08 | PIT2 PADR
FF800EOA | PIT2 PAAR
FF800EOD | PIT2 PSR

Port General Control Register
Port Service Request Register
Port A Data Direction Register
Port A Control Register

Port A Data Register

Port A Alternate Register

Port Status Register

b

[

i

!
i

| lint

l e
Jitk 1 i

Ny
i

|1t
\I /ST)

e

Table 1.2 PI/T2 User I/O Interface Signals

PIN No. | PORT No. | IN/OUT | P2/J2 No. | SIGNAL

4 PAO ouT A29 READY*

5 PAl ouT C29 LW/B*

6 PA2 OuT Al0 SLCTo*

7 PA3 ouT C30 SLCT1*

8 PA4 IN A3l ENBo*

9 PA5 IN C31 ENB1*

10 PAG6 A32

11 PA7 C32

13 H1 A27

14 H2 C27

15 H3 A28

16 H4 C28

Table 1.3 The Address Map
START (HEX) | END (HEX) | SPACE | DESCRIPTION

00000000 OO3FFFFF 1.0 MB [Shared Memory
00400000 FOFFFFFF 3.9 GB | A32: D32, D24, D16, D8
FA000000 FAFFFFFF | 16.0 MB | Message Broadcast Area
FB000000 FBFEFFFF | 15.9 MB | A24: D32, D24, D16, D8
FBFF0000 FBFFFFFF | 64.0 KB | A16: D32, D24, D16, D8
FC000000 FCFEFFFF 15.9 MB | A24: D16, D8
FCFFO0000 FCFFFFFF 64.0 KB | A16: D16, D8
FDO00000 FFFFFFFF System Area

10S-9 and 0S-9/68000 are trademarks of Microware Systems Corporation.
3VMEPROM is a PDOS based real time monitor.

L

o
[

[

"

[N
i

1!

T

goe

1
i

noit Em

gee

»

s

o

2. Data Acquisition Module

When the fault is injected from the fault injection module, the data ac-
quisition module is activated and activity data on 8 or 32 observation points
are synchronously sampled with the clock of the target system and written
into the SRAM memory module.

2.1 Hardware Overview

Basically, the data acquisition module generates the address signals from

the clock of the target system and transfers the sampled data to the meniory
module via the VMEbus.

A block diagram is shown in Fig.2.1. This board consists of the following
functional blocks:

e Clock Control (CKCTRL)
* Address Generator (ADDGEN)

Address Modifier Selector (AMS)
o Address Bus Buffers (ABUF)

¢ Data Transfer Control (DTCTRL)
Input Channel Selectors (INSLCT)
Data Bus Buffers (DBUF)

Bus Master Control (BUSMST)

SnQIxA

¢1-01J1S
1€-004
t4y3g
$10V1Q

131141
+1-0Sq
¢1S44
+10009¢
+13S3%

-SAS
1£-0¥9

(RSH KD

/A1

1q¥041

£¢-10V

G-ORY

ITISAS

¢1-089N3

usider(

Y00Tq TBUOYIOUNg [°7 314

!

$1-0121S

LSWNSNnd

———#SVT —

¢JIV1a1

— 1344
1_

+g94q

1

039
_

sVEHC

— +qagq —
ﬁ.»a<mm,

¢QI0ATT

9/ X7

$SY1

|

TY4LO1lQ

1€-00VYLlyd

sng 1Yd01

i4nga

191

10V1

dNngy

G-0NV1

|
ﬂo-ﬁo<o_

#4101

—

8-041

+g-T4N3

LOTSNI

€2-02Vd

1aNd

mwumo<o||;

SNV

0dNT

NIdaayv

IT1

44391

$4T01

THLIMNMO

+O1YL

+13S3Y
-SAS
!

*ﬁmzm_

+09NT

vy
inl :—

A

_ 11ISAS

¥10

I

i

m

d

H

|
I

i+ I

il
b

vr i

i

!
L

gl

i

2.2

Clock Control

¢ Recording Clock Selector

- J1-1, IC1-1
— Selectable by bit 1 and 2 of J1.

* Clock of CPU Under Test: bit 1: ON, bit 2: OFF
* 16MHz VME System Clock: bit 1: OFF, bit 2: ON

e Clock Frequency Divider

- J1-2, IC2
— Selectable by bit 3 — 7 of J1 as shown in Table 2.1.

e Qualifier Trigger

- IC1-2, IC3-1, IC10-1
— Trigger: Fault injection signal transferred from FIM.
~ The trigger is enabled when ENB1 is high.

o Clear Control

- R1, IC1-3, IC16-1
— Generate Clear Signal for the Clock Control, Address Generator,
and Data Transfer Control.

— Reset Signals: System Reset, Bus Error, and End Address.
e End Address Selection

- J2-1
— End address: $XXOFFFFF - $XX7FFFFF
— Selectable by bit 1 — 4 of J2-1 as shown in Table 2.2.

U §

i

I

f

8

1wt

B

o

o)

Table 2.1 Frequency Division Settings

Division | bit 3 bit4 bit5 bit6 bit 7
1 ON OFF OFF OFF OFF
2 OFF ON OFF OFF OFF
4 OFF OFF ON OFF OFF
8 OFF OFF OFF ON' OFF
16 OFF OFF OFF OFF ON

Table 2.2 End Address Selection

End Address

bit 1

bit 2 bit 3 bit 4

$XXOFFFFF
$XX1FFFFF
$XX3FFFFF
$XX7FFFFF

ON
OFF
OFF
OFF

OFF OFF OFF
ON OFF OFF
OFF ON OFF
OFF OFF ON

1 —(
b o,

U REED S

1"
h“

[vw e |
TN

IYVI\ LAl
L NV

2.3

Address Generator

¢ Address Signal Generator
- I1C4, ICS, IC6, IC7, 1C8, 1C9

— Implement 24-bit synchronous binary counter using a carry-look-

ahead circuit.

— Maximum clock frequency is

calculated as follows:

fmax = 1/(CLK'toRCOtpLH + ENTtsU)

— Address Space

* Up to 8 Mbyte Address Space. Refer to Table 2.3.
* Start address: $XX000000 (fixed)
* End address: $XXOFFFFF - $XX7FFFFF (selectable)

o Counter Status Output
- IC10-2

— When counters are enabled to count, ENB1* is asserted.

Table 2.3 Address Space and End Address

Address Space

End Address

1 Mbyte
2 Mbyte
4 Mbyte
8 Mbyte

$XXOFFFFF
$XX1FFFFF
$XX3FFFFF

$XX7FFFFF

v

1
1

TR [

oI

gno e w

m”uu |‘\ |
9

I i B

;o RN

0o

@

2.4

Address Bus Buffers and Address Modifier Selector

¢ Address Bus Buffers

- I1C12, IC13, IC14

— Three transparent D-latches (74AS573) interface local address sig-

nals with the VMEbus address bus.

— DHBA* places the 24-bit outputs in either a normal logic state or

a high-impedance state.

o Address Modifier Selector

- J2-2, RN, IC11
— 6-bit Codes: Used for an additional decoding parallel to the ad-

dress signals.

— Address Mode: Supports the standard address mode (A24) for

supervisor or nonpriviledged memory access.

*

*

*

*

3E: Standard Supervisor Program Access

3D: Standard Supervisor Data Access

3A: Standard Non-Priviledged Program Access
39: Standard Non-Priviledged Data Access

— Selectable by bit 5 - 10 of J2 as shown in Table 2.4.

Table 2.4 Address Modifier Codes and Settings

HEX | Binary | bit5 bit6 bit7 bit8 bit9 bit 10
3E | 111110 | OFF OFF OFF OFF OFF ON
3D | 111101 | OFF OFF OFF OFF ON OFF
3A | 111010 | OFF OFF OFF ON OFF ON
39 | 111001 | OFF OFF OFF ON ON OFF

TR

B

Hi

| I oo

k

(Y IH IA

{ o

Lo

i

i IC

ot

g

2.6 Data Transfer Control

¢ Data Transfer Bus Control

~ ENB1, DWB*
+ 1C10-3, IC15-1

* When READY* asserted, both ENB1 and DWB* are latched
to be active.

* LCLR* resets the outputs.
~ LAS*
* R2, 1C10-4, IC15-2, IC17-1, -2
* When READY* asserted, LAS* is set to be active.

* During data transfers, LAS* is asserted by LCLK and reset by
LDTACK*.

- LAO1, LDSO-1*, LLWORD*
* I1C16-2, -3, -4, IC18-1, -2, IC30-1, -2, -3, 1C33-1

* When LW/B* is high (long word mode), LDS0*, LDS1*, LAO1,
and LLWORD* are set to low during data transfers.

* When LW/B* is low (byte mode), LLWORD* is set to high
and other signals respond as follows:

LDS0* = QA00, LDS1* = —QA00, LA0O1 = QAO01
¢ Data Bus Buffer Control
- IC17-3, -4, IC18-4, -5
— Long Word Mode (LW/B* is high)

* During DHBD* is active, ENBL* is asserted and ENBB* is
de-asserted.

— Byte Mode (LW/B* is low)

* During DHBD* is active, ENBB* is asserted and ENBL* is
de-asserted.

[

Im ! \“]
L0l

 eni

LHb

I {[w
[0

o
| v

it

i}

i

o
oliddi

[T

I

¢ Bus Release Control

- IC31-1
— Support Release On Request (ROR) operation.

* Bus request signals (BRO-3*) will assert BREL to release
BBSY* at the end of the current data transfer.

!
b

1

(N

"
i

iy
Hl]

"
ki

LA

1l

| TRTR |

L

2.6

Input Channel Selector and Data Bus Buffers

o Input Channel Selector
- IC10-5, -6, IC19, IC20, IC21, 1C22

— Implement 32-to-8 data selectors using four 4-bit data selectors.

— Data selection is controlled by the two select inputs (SCLT0-1*)
as shown in Table 2.5.

e Data Bus Buffers

— Long Word Mode

+ 1023, 1C24, IC25, 1C26

* Four transparent D-latches (74AS573) interface 32-bit input
data with the 32-bit VME data bus (D00-31).

* When LAS* is taken low, the outputs are latched to retain
the data that was set up. Refer to Table 2.6.

* ENBL* places the 32-bit outputs in either a normal logic state
or a high-impedance state.
— Byte Mode

* 1027, 1C32

* Two transparent D-latches (74AS573) interface 8-bit local
data bus (LD0-7) with the 16-bit VME data bus (D00-15).

* When LAS* is taken low, the outputs are latched to retain
the data that was set up. Refer to Table 2.6.

* ENBB* places the 16-bit outputs in either a normal logic state
or a high-impedance state.

'M napn
b il u

AN

N

i

ik

ikt

U

Ll

R
[N

rm o wa

ol

nEr o Wt

'

Table 2.5 Input Channel Selection

SLCT0* | SLCT1* |LD7 LD6 LD5 LD4 LD3 LD2 LD1 LDO
high high 280 24 20 16 12 08 04 00
high low 29 25 21 17 13 09 05 01
low high 30 26 22 18 14 10 06 02
low low 31 27 23 19 15 11 07 03

Table 2.6 (a) Active Portions of Data Bus
DS1* | DSO* | A0O1 | LWORD* | D24-31 D16-23 D08-15 D00-07
low | low | low low byte0 bytel byte2 byte3
high | low | high high byte 3
low | high | high high byte 2
high | low | low high byte 1
low | high | low high byte 0

Table 2.6 (b) Data Organization in Memory

Operand | Byte Address
byte 0 | $XXX....XX00
byte 1 $XXX....Xx01
byte 2 | $XXX....XX10
byte 3 | $XXX....XX11

2.7 VMEbus Master Control
- e Master Bus Controller
- 1C28, IC29
-— - VME 1220! provides two device chip set for non-slot 1 master bus
controller.

- — Initiating a Bus Request

* Drive BRO* low afler receiving DWB* and LAS* asserted.
= — Arbitration

* After receiving BGOIN* from daisy chained VMEbus grants,
- local arbiter arbitrates between DWB* and BGOIN.
- . If DWB* wins the arbitration (i.e. DWB* occurs before
7 BGOIN*), BBSY* will be asserted.
- . If BGOIN* wins, local arbiter will drive BGOOUT*, which
= passes the bus grant down the daisy chain to adjacent
s master in the system.
; - Data Transfer

* Local master does not access the bus until the previous mas-
: ter has relinquished control of bus, which occurs when AS*,
~ DTACK* and BERR* are de-asserted.
* Support Address Pipelining using DHBA* and DHBD*.
- Broadcast the address of the next bus cycle while the data
transfer of the current cycle is occuring, i.e. DTACK* and
DSn* are still low.
- - DHBA* is enabled as soon as AS* is disabled.
- When DTACK* goes high, signifying the end of the current
data cycle, DHBD* enables the data buffers for the next

ST

e

- data cycle.

= * WRITE* is latched during address pipelining to hold its level.
= — Bus Release

.. * Supports Release On Request (ROR) protocol via BREL.

- - Release the data transfer bus whenever another module

requires it.

C

nr

'

{f

e

i

- External bus request will assert BREL to release BBSY*
at the end of the current data transfer. Refer to section
2.5.

. If no bus requests are pending, the BREL will he kept
de-asserted and the local master maintains BBSY* low to
perforin continuous VMEbus data transfer cycles.

1PLX Technology, 625 Clyde Ave., Mountain View, CA 94043

[

i

W

T
Jilll

it

Wil

ik

!
b

I

[y

il

3. Interface Signals

3.1 VMEDbus Interface

This section provides information on VMEbus interface. Table 3.1 and
Table 3.2 list P1/J1 and P2/J2 pin assignments respectively. The P1 connec-
tor includes all the signals required for the 68000. The P2 connector provides

expansion of both address and data buses to 32 bits and also provides 96 pins
for user I/0O lines.

The data transfer bus is very similar to the 68000’s native buses except
the following signals. Long word (LWORD*) is asserted for 32-bit data trans-
fers. The 6-bit address modifier (AMO - AMS) allows the type of access to
be specified. The bus error signal (BERR*) is typically used to indicate a
ImMemory error.

The interrupt bus has seven interrupt request lines (IRQi*), an interrupt
acknowledge (IACK*), and a daisy-chained priority signal (IACKIN*, IACK-

OUT*). Each of seven lines corresponds to an interrupt priority level.

The arbitration bus provides four levels of arbitration. For each level,
there is a bus request signal (BRi*) and a bus grant daisy chain (BGilN*,
BGIOUT*). The utility bus consists of SYSCLK, SYSRESET*, SYSFAIL*,

ACFAIL*, and power supplies.

o

AN

{ LIS

il

L
e

i

IR R

LRl

g

ol

Table 3.1 VMEbus P1/J1 Pin Assignments

PIN No. | P1/J1 ROW A | P1/J1 ROW B | P1/J1 ROW C
1 D00 BBSY* D08
2 Dol BCLR* D09
3 D02 ACFAIL* D10
4 D03 BGOIN* D1l
5 D04 BGOOUT* D12
6 D05 BG1IN* D13
7 D06 BG1OUT* D14
8 D07 BG2IN* D15
9 GND BG20UT* GND
10 SYSCLK BG3IN* SYSFAIL*
11 . GND BG30UT* BERR*
12 DS1* BRO* SYSRESET*
13 DS0* BR1* LWORD*
14 WRITE* BR2* AMS5
15 GND BR3* A23
16 DTACK* AMO A22
17 GND AMI A2l
18 AS* AM2 A20
19 GND AM3 Al9
20 IACK* GND A18
21 IACKIN* SERCLK Al7
22 JIACKOUT* SERDAT* Al6
23 AM4 GND Al5
24 A07 IRQ7* Al4
25 A06 IRQ6* Al3
26 A05 IRQ5* A12
27 A04 TRQ4* All
28 A03 IRQ3* Al0
29 A02 IRQ2* A09
30 A01 IRQ1* A08
31 —12VDC +5VSTDBY +12VDC
32 +5VDC +5VDC +5VDC

vl Wik

!

gl

Ll

LR

RN

L

|11

{ |

GiE

L

Table 3.2 VMEbus P2/J2 Pin Assignments

PIN No. || P2/J2 ROW A | P2/J2 ROW B | P2/J2 ROW C

1 ¥5VDC

) GND

3 RESERVE

4 A24 -

5 A25

6 A26

7 A27

8 A28

9 A29

10 A30

11 A3l

12 GND

13 +5VDC

14 D16

15 D17

16 D18

17 D19

18 D20

19 D21

20 D22

21 D23

22 GND

23 D24

24 D25

25 D26

26 D27

27 D28

28 D29

29 READY* D30 LW/B*
30 SLCTo* D31 SLCT1*
31 ENBO* GND ENB1*
32 +5VDC

N SN

1

Tl

[‘w
a s

il

] I v o

llH ||]"I
v

3.2 Input Channels

The input channels consit of data channels (DATA00-31), clock (CLK),
and trigger signal (TRIG*). Table 3.3 shows the pin assignments of the input

channels.
Table 3.3 Input Channel Pin Assignments

PIN | DAM Signal | ECB Signal | PIN | DAM Signal | ECB Signal
(a) (b) GND GND
(c) (d) GND GND

1 DATA04 D04 2 DATAO03 D03

3 DATA05 D05 4 DATA02 D02

5 DATA06 D06 6 CLK 4M-CLK
7 DATAOQ7 D07 8 DATA14 D14
9 DATA08 D08 10 DATA15 D15

11 DATA09 D09 12 TRIG* FIEN*!
13 DATA10 D10 14 DATAO01 D01

15 DATA1l D11 16 E

17 DATA12 D12 18 AS*

19 DATA13 D13 20 UDS*
21 DATA00 D00 22 LDS*
23 DATA31 Al5 24 DATA16 R/W*
25 DATA30 Al4 26 DATA29 A13
27 DATA28 A12 28 FC2
29 DATA27 All 30 FC1

31 DATA26 A10 32 FCO

33 | * DATA25 A09 34 DATA17 A01

35 DATA24 A08 36 DATA18 A02

37 DATA22 A06 38 DATA19 A03

39 DATA23 A07 40 DATA20 A04

41 DATA21 A05 42 DTACK*
43 8M-CLK 44 6800IRQ*
45 IM-CLK 46 VMA*

!FIEN*: Fault Injection Enable, a signal transferred from the fault injection module.

e

Al ..

I

Ci.

o

o,
)

l» s

Appendix A Schematic Diagrams

A.1 Clock Control

A.2 Address Generator

A.3 Address Bus Buffers and Address Modifier Selector
A.4 Data Transfer Control

A.5 Input Channel Selector and Data Bus Buffers

A.86 VMEbus Master Control

-9l m £2-0CVD
—0 O

HLH1DT <3 él_l _Iw__
OOM &_ — <7 +¥¥381
-0l -9 A +L3STUSAS
08NI <7]
-QOL2I 2 A|.Io@||'0 oL
L08N3 () o] 0 40 2- 10 _ ang
M1 <1 ¥ l~
PR ORPY! &
HMHHFLW L’O M1ISAS
1 0 -
| ¢ Ol q = m o C O A
! : o -1p

o I TN I meoonm wmr Poar nl I yon '

<] +¥1D1

| !
£2-00YD
¢z 0ZvD _ & oo | | sl AL
<——
1111 4] 111] 4] 111
ao vO)\.P an VY <._. an 123 <h.
601 ' Lis g9l BEMEY
q I q 5 d q 4 d
e A e A
9 VA 9 Va 9 VA
ﬂ ! w <3 A1D1
| ou e || : wo || ¢ 0w ﬂ_
1110 4] 1111 4] 1111
an vD ~[aD vO \Y% ao vO oV
—4d 90| ¥ GO —¥ POl
a 1 d aq Al e a 5 d
Lil T HEUE _ _L.H
5 Va 9 Ya 5 A
2-01 0l B
Ja8N3 D) A
| ol g | | _“_:m,.” l..vl,a 1~ ...— B |] o il il g /| I |

—(_) LWORD*

N—ou"D A01-23

MadasrlWiaaaceqdedaasaqmaranand
.,..le;ﬁ.nC " _AWOIJA ° m m_Ol[C W _MO.. © Mv mo.ll
LTI | 200 | o) | oo

12| |5 < |3 513 5

>

DHBA*
QA02-23 >

>

LAOI-
LLWORD*

(A R I |

A |

1Y B |

Ti1% I

Ln

i

LB

R

1

VA
h IC15-1
IC10-3 0 " @
READY* (D)] > < 3p
LCLR* > | 1IC10-« — 9
% | |
R2
LDTACK* D—‘—-} i IC17 -2
2 |
LCLK D>— i__‘ P EED '
1
ENBO >—
Cczma | R e
Qa1 o> TJ Eg D ;
S IC16-3
QA00 D—D 5 __Dc—o
-2

LW/B*

IC18-3 ,_{>0_3
O ogs L8] o
> ﬁa[> T D"‘_—D
— |
CO—
> B,
o [C31-1

ENB1

bweg*

LAS*

- LAO1

LDSo*

LDS1*

ENBL*

ENBB*

LLWORD*

BREL

oL IR BN L

I

I [T
[T

i

A R

v

e e

I

P

o

o
o

—_—

a

00O

—

Sdasadi

G

N
N

] IC3
N

_ N
N

LD

2

(6] =
—q

N

fiddddd 1

o

(]

e

AE:3IPBIIIL:

]

ENBB* >

SLCT1*

D=

ANER
~

17

~—3|C22

A

Co Swn
> -
do T b
1< e 2 g P
o m O a2}
2110
© ~ -
]| |
- >
T2 & M
o) M
20
3

©

O

$JJTIJIT)

(rrrrer

N -

DATA00-31

qaddaddal
E3SPINDY)]
{edaaaaq
s
g1111T)) /
3TOOIIT
T
A A

D00-31

NS R I

e B

v

[OFTORN {ICA 13/ A

L

i

e

F‘\H\!M w
LA L

BREL >—

IC28

SYSRESET* (___>

BGIN® @—-4>—

LAS* >

C18.¢

DWB* >—

BGIN

AS*

000

V

VME1220A

LDS0-1* >—

N

DTACK* (D
BERR* (_)—

BBSY*

DHBA*
DwB*
LAS*

R/W*

b 0vy 0

|

T

VME1220B

IC29

BR*

BGOUT*

BBSY*

DHBA®*

AS*

LDTACK*
LBERR*
WRITE*

DHBD*

DS0-1*

I

| Hil

I"
i

tl

I T K 1

I

i

L

T

il

Appendix B

Parts List

Table B.1 DAM Parts List (1)

LABEL | Part Number Pins DESCRIPTION
IC1 | 74LS132 14 Quadruple Schmitt NAND gates
IC2 74LS161A 16 Synchronous 4-bit counter
IC3 T4AS74 14 Dual D-type F/Fs
IC4 T4LS161A 16 Synchronous 4-bit counter
1C5 74LS161A 16
1Cé T4LS161A 16
1C7 74LS161A 16
1C8 74LS161A 16
1C9 74LS161A 16
IC10 | 74LS04 14 Hex inverters
IC11 | 74AS573 20 Octal D-type transparent latches
IC12 | 74AS573 20
IC13 | 74AS573 20
1C14 | 74AS573 20
IC15 | 74AS74 14 Dual D-type F/Fs
IC16 | 74AS02 14 Quadruple 2-input NOR gates
IC17 | 74AS00 14 Quadruple 2-input NAND gates
IC18 | 74AS04 14 Hex inverters
IC19 | 74LS153 16 Dual 4-to-1 data selectors

l.ywmw

r

Table B.2 DAM Parts List (2)

LABEL | Part Number Pins DESCRIPTION
1C20 | 74LS153 16 Dual 4-to-1 data selectors
1C21 | 74LS153 16
1C22 | 74LS153 16
1023 | T4AS573 90 Octal D-type transparent latches
1024 | T4AS573 - 20
1C25 | T4AS573 20
1C26 | T4AS573 20
1C27 | T4AS573 20
1C28 | VME1220A 94 VMEbus master controller
1c29 | VME1220B 24 (Non-slot 1, P-45)
1C30 | 74AS02 14 Quadruple 2-input NOR gates
1C31 | 74LS20 14 Dual 4-input NAND gates
1C32 | T4AS573 20 Octal D-type transparent latches
1C33 | T4AS00 14 Quadruple 2-input NAND gates

i

L §)

1

1

.

I AN |

|-

L

|
I

f

mit |

!

Appendix C DAM Board Layout

C.1 Component Side Layout
C.2 Wiring Side Layout

CYELB VO 'UHVINIAG
"BAV INOLSUV D 0YKeL
ANMVCANOD) DN 1)

! PR TP B R A — [AR oY w.ﬂ‘. 'R .,2.. ' [
VAL ey 7ok I .] R Eo I T I A T y h v
P s e . { Ol s N - ¥ R R L e ' H
F.

- - - R |l»lu..‘lk..tli, Ot, - ‘_. ™ ..v_ rnm r.vl <l ~.L [BT PRI & .s.-.w.. N ..‘.\.v.

. §
w , .
o I I 1 O Y O B S R PR A B

v = — — — ¥ QA :
) 1QV] Q| i
L H

—y— -

-

AP S

.

Tay

. TR e e

20
(22
32

Trial
31
15.
17

X T

R
NP

- Cimaiaatons o ot i L odamgcd et S £2 4

——— T
. -

BN
O S i
e VR S N S SRS JONPUDUURE Jeot o I

er

|
6
3
18-
19
2]

LI
- PNy

= ‘1‘» .
R e X Y

MO O _
< N~ o 0 — Q

v S e ——— ORI
A Y "_'.t'g Sy o

T A WY P e e - S P YT AP £
. - P

| b it e z ﬂ w. e e med A - —o. . 3
, - v . . .!...—1.‘.. L4 o — .o P S PR B .IP - [N
| : P BRI L LI I N R R § U . . " [P -
| POV VPSPPI § — wr rs.l... : bg N T 5 -~ -
' — P , o o
PYRSEEE e .- L(r P)
o\fiLE‘\:l ILFIDL'UD.I L , . o N . — v - . *
o Ce A _ sf PN . F’ ' . - '
ﬂ el ! eto...l.r.Lll.B hl:lrrAfvcl.r B oot B L o (i ,) .
L Ll fl__ -~ 2 hw LF_..:lrl Lobe it ...:V it
TRt IS L B Ty St 131:4. AT T I Sl

—

U3dVd LNOAV 3AIS ININOJINOD
\ ayvoOoY "3 £:n9-0913
)] S % B SO TR b N1+ TN F111 SO0 NIV O A+ Y4 JO 1 Y S 1

bdZsv

o i

oy

IO SRES G

T
-~ e

T G e

-
Ths B

=
b

Y

]

ZVEL6 VINUOLIIVD' IAS

INN3AV INOLSAVIL vorel
ANVONOD DINOULDH 1

R LR R,

24

22

19 .

17
15

13
4 f::-

rn

18
3

16

e

_w.N-J.

NY

.'-__.,‘Ev".,-_;’ e, B et :

—_—
-

b la oty - .
:.;{:. 4 S L o
T ki it Y N S s B n S

T s WY

i

..:: E E— ?—.l‘:}:,ﬁi In ‘E v:ﬁl—

_ [

R

pretvry e o TR URe Y o
. AYEERIID 1_ .._££y
P c:(LE&.CLkEk
,Z * ._:

~NRT

ammmgmmmas

:.::.
LI P

HrisbE

rmr}
rh \\—b ~ i

t,.r_

.\e JUr “..
_r..lhwu& Elk_ﬂr

B I

i v :;— —

ONIGINAL PACE 18
OF POOR QUALITY

{ 450 [N

lqu
L R TRy

o oeroq

o

Lt Y

{4

e
I

m

il

gl

Ll

Wil dhl[m

rie

Appendix D Copies of Data Sheets

D.1 VME 1220 Non-Slot 1 VMEbus Master Controller

“June 1990

VME 1210/1220

Slot 1 and Non-Slot 1 VMEbus Master Controllers

—Dilstinctive Features

+ VME 1210 provides two device chip set for slot 1
. master bus controller and single level arblter

= VME 1220 provides two device chip set for non-siot 1
master bus controller

~ » Integrates 48ma and 64ma VMEbus slig-
nals:AS*,DS0*,DS1*,WRITE"*,BR*,BBSY*

* Integrates input hysteresis bufters

Supports Release When Done (RWD) and Release On
Request (ROR) protocols

Supports address plpelining, block transfers, and
early BBSY* releasep P o

Avallable in Cornmerclal, Industrial and Military tem-
perature ranges

11
Y

LI

__Programmable Version Avallable.

It the VME 1210/1220 does not match the requirements
of the design, a programmable version is available (the
PLX 464) which allows the user to customize all inputs,
— outputs and logic. Programming is performed using
industry standard tools such as ABEL™ and CUPL
software and commonly available PLD programming
hardware. Contact PLX for a data sheet on the PLX 464

Applications

+ VMEbus masters residing in slot 1 boards (VME 1210)
. VMEbus masters residing in non-slot 1 boards (VME 1220)

General Description

The VME 1210: The VME 1210 is comprised of the VME
1210A and the VME 12108 for siot 1 applications. The
devices are CMOS ang packaged in 24 pin 309 mil wide DIPs
or 28 pin J-type LCCs. The VME 1210A provides bus
requesting, local arbitration, and sin%Ie level system arbi-
tration. The VME 1210B functions as the VMEbus controller.
The requester initiates a VMEbus request from the local
master's bus request for a data or interrupt cycle. The bus
controller controls the bus after initiation of a bus cycle and
relinquishes the bus at the end of the bus cycle. The bus
controller supervises the handshaking between the local
master CPU and the slave modules,

The VME 1220: The VME 1220 is comprised of the VME
1220A and the VME 12208 for non-slot 1 applications. The
devices are CMOS and packaged in 24 pin 300 mil wide DIPs
or 28 pin J-type LCCs. The VME 1220A provides bus
requestingEand local arbitration. The VME 1220B functions
as the VMEbus controller. The requester initiates a VMEbus
request from the local master's bus request for a data or
interrupt cycle. The bus controller controls the bus after
initiation of a bus c_Frc]:le and relinquishes the bus at the end
of the bus cycle. The bus controller supervises the hand-

and other PLX products. shaking between the local master CPU and the slave
modules.
;;,5
e s VME 1210 s B
=3 LDTACK
- SYSRESETR Slot 1 Losia a3 DiaDw
- go -
BGAXS; mO.Stel" DHBAx w3 Vs
NC LASK Connect to pin 1)
= NC R/Wx w23 | BERR®
B NC BBSYN L] =R 3L
== BGIN Ju 1 Connect to pin 13 Connect to pn 17 Connect to Vss
b Vss &3 B Connect to pin 14 Vss DSOw
VME 1210A VME 1210B
-
= vl B VME 1220 jyed ik
= SYSRESET O« " :G’f,ﬂ;'. Non-slot 1 s by = ;3;;5"'
DwBx s » Vss DTACKx »y Vss
asw ¢ 2™ w5 pHBAx master BERR® o Y wRITER
Connect to pin 17 ’ » Vss DHBANX vss
= Connect to pn 16 9 73 Connect to pin 7 LASx 7E£3 Connect to pn il
- [Lol == L] %[Connect to pn B R/wn “EJ L DERRN
== NC »] NC . BBSYn o] DSI=
BGIN “EJ Connect to pin 13 Connect to pa 17 “E Connect to Vss
Vss » L] Connect to pia 14 Vss oEd pSOn
= VME 12204 VME 12208
| =]
Figure 1. Pinout of VME 1210/1220 (DIPs) Ov, ,
i_>atent Pendirig ;4 435
“ABEL is a trademark of Data VO Corp. Cuq
CUPL is a trademark of Logical Devices, Inc. {y
B PLX Technology, Inc. 1.069
Ll anirriabhe {000 £AC Aloda Auin Barimsaia \lime: PNA AIRIN TIAEN AGA Asan

PRECEDING PAGE BLANK NOT FILMED

r r"

L

dll

I

: LAy

e

prem

pymu

o G LA L L R

T

o

ra

VME 1210/1220

:n Description

VME 1220A
Pin # Pin #
LCC DiP Signal Type Function

3 2 BREL | Active high; Bus release signal indicating BBSY* can be
released.

4 3 LAS* | Active low: Address strobe from local master.

5 4 SYSRESET" 1 Active low; VMEbus System Resel.

6 5 Dwa* | Active low; Device wants bus, local master requests con-
trol of bus.

7 6 AS* i Active low; VMEbus Address Strobe.

9 7 - | Connect to pin 17 (DIP) or pin 20 (LCC).

10 8 - | Connect to pin 16 (DIP) or pin 19 (LCC).

11 9 NC | No Connedt.

12 10 NC | No Connect. o

13 11 BGIN | gcétme. high; Inverted VMEbus Bus Grant In signal,

14,21, 12,18, Vss Chip Ground.

24 20

16 13 - 0 Connect to Pin 14 (DIP) or Pin 17 (LCC).

17 14 - I | Connect to Pin 13 (DIP) or Pin 16 (LCC).

18 15 NC 0 No Connedt.

19 16 - O | Connect to pin 8 (DIP) or pin 10 (LCC).

20 17 - o] Connect to pin 7 (DIP) or pin 9 (LCC).

23 19 DHBA® 0] :g:ta‘néfelow; Device has bus address, address buffer

25 21 BGOUT' O |Active low; VMEbus Bus Grant Out signal.

26 22 BBSY* Vo] A‘cliv? low, 48 mA open collector; VMEbus Bus Busy
signal.

27 23 BR® o] A‘gtri‘vae' low, 48 mA open collector; VMEbus Bus Request
s .

2,28 1,24 Vee +5 V Chip Power

1,8, - NC - No Connect.

15,22

PRACEDING PAGE BLANK NOT FILMED

VME 121071220

-

~ Pin Description
= VME 1210B and VME12208

Pin # Pin #
o LCC DIP Signal Type Function
3 2 ows* [Active low; Device wants bus, local master wants control
of VMEbus.
_ 4 3 LDSO* | Active low; Lower data strobe from local master.
5 4 LDS1* [Active low; Upper data strobe from local master.
- 6 5 DTACK* | Active low; VMEbus Data Transfer Acknowledge, data is
e valid during a read cycle or data has been accepted from
the bus during a write cycle.
7 6 BERR* l Active low; VMEbus Emor signal.
- 9 7 DHBA* I Acthl;le low; Device has bus address, address buffer
. enable.
- |10 8 LAS® || Active low; Address strobe from local master.
Ll 1 9 RW* | |Active highflow; Read or write cycle from local master.
12 10 BBSY* | Active low; VMEbus Busy, local master controls bus.
£ 13 11 - | Connect to pin 17 (DIP) or pin 20 (LCC).
= 14,21, 12,18, Vss Chip Ground.
B 24 20
] 16 13 DSso* O |Active low; 64ma VMEbus lower Data Strobe signal, indi-
— cates valid data on bus.
B} 17 14 - l Connect to Vss.
z 18 15 DS1* O Active low; 64ma VMEDbus upper Data Strobe signal,
-— indicates valid data on bus.
19 16 LBERR® O |Active low; Open collector signal, bus error to local mas-
B ter.
— 20 17 - O | Connect to pin 11 (DIP) or pin 13 (LCC).
23 19 WRITE* O |Active low; 48ma VMEbus Write signal, indicates bus
E read or write cycle.
e 25 21 DHBD* o) Active low; Device has bus data, data buffer enable.
- 26 22 LDTACK"® O Active low; Open collector signal, data acknowledge to
z local master.
=1 27 23 AS* O |Active low; 64mA VMEbus Address Strobe signal, indi-
_ cates valid address on bus.
z 2,28 1,24 Vee +5 V Chip Power
- 1,8, . NC - |No Connect.
) 15,22

Y

'l |mit ¥
AT

LT

i

LA

gl

i 1

[

K

L IEH

i I (I T

VME 1210/1220

VME 1210/1220 Timing Waveforms

write

DTACKx

LDTACKx
R/Wx _\

WRITE *

BGOUTx

DWBx* No DWBx

Figure 5. Timing Diagram

lo—§ °

PRECEDING PAGE BLANK NOT FILMED

ME 121071220

- Imlng Speclfications

- Max. ~ime(ns) unless
Timing otherwise specified
Parameters Signals C-45 M-e7 Description
e t DWE'* to BR" assened 95 13 It DWE" is assened aher LAS®
2 L£.3" 1o BR® asserted %0 130 It LAS® is asseriec aher DWB"
-- <] BR* o BG asserted 0 0 VME 1210 only when intemal BR" generatoc
= (EG connected to BGIN)
45 65 VMZ 121C only when external BR® received
(BG connected to BGIN)
System arbiter ime | System arbize. Time | VME 1220 only
= 4 BGIN to BBSY" asserted 125 185 VME 1210 only, inc.udes delay line: 55ns for
M-65, 45ns for M-5%, 35ns for C-45, 40ns for
C-35, 60ns for C-25 pant
135 185 VME 1220 only
15 BBSY" 1o BR* negated 45 65
B 6 BBSY" to DHBA® asserted 45 65
— 7 BBSY* to BGIN negated 45 max 65 VME 1210 only
- 35 min €5 min
- System arbiter time | System arbiter ime | VME 1220 only
= 8 DHBA" to DHBD" asserted 45 65
. 9 DHBA® to WRITE"® asserted 45 65 Conditional upon R/W"* value
_ t10 DHBA®* ¢ AS® asserted 90 120 Ensures 35ns minimum address 1o AS*® and
= 70 (min.) data to DSn"* set up times
= m AS" 10 DSn* asserted 45 6%
: 112 BGIN 1o BBSY" negated 80 max 120 max VME 1210 on’y;
: 70 min 110 min VME 1210 only; t7min + t12min 2 90 ns min,
BBSY" asserton
. 135 max 195 max VME 1220 only
R 105 min 165 min VME 1220 only. (see note below)
; 13 BREL to BBSY" negated 45 65 Valid only when BREL is assened after
- BGIN is negated
] 114 DTACK' 1o LDTACK® asserted 45 65
— 115 LDTACK® to LAS'/LDSn" negated @ Local master @ Local master Local master's time to negate strobes
= He LAS® to DHBA" negated 45 65 It DWB* already negated
| 117 DWE* to DHBA" negated 45 65 If LAS® already negated
3 118 LAS® 1o AS* negated 50 72
= 19 LDSn" 10 DSn* negated 50 72
T 20 LDSn" to DSn* negated 50 72
£ "3 DSn® 1o WRITE® negaled 45 65 Ensures 10ns hold time
= 22 DSn*/DTACK® 1o LDTAZK® 45 65 * Earfiest negation of DSn* or DTACK® causes
g nagated LDTACK" to be negated.
1 w23 BGIN to BGOUT* assened 90 130 VME 1220 only
4 25+0,35+d,45+¢ £54d,65+d VME 1210 only
- 24 BGIN to BGOUT negated 45 65
I ©s5 Latest of LAS*/OWB"* to AS® 135 195 Assertion ime when already have bus
B asseried (BBSY" assened,.
E= 26 Latest of DHBD*ADS" 1 DS* 45 65 Assertion time when already have bus
T assered (BBSY* assented)
_Note:
E_ BBSY"is guaranteed to be asserted for a minimum 01 90 ns in the VME 1210A devices and the C-45 device of the VME 1220A, even if BGIN is negated

immediately after BBSY" is asserted. For the C-35 and C-25 VME 1220A devices, the sum of the system arbiler "BBSY" asserted to BGIN® negalec”
tme and the {12 minimum time on the VME 1220A must be greater than 90 ns. Generally, this ime wil! be taken up compi - ely by the system arbiter
time, however, if not, a delay line can be connected between pins 8 and 16 (DIP) or pins 10 and 19 (_CC; on the VME 1220~ device 10 guaraniee the
90 ns minumum. For example, if the sysiam arbiter "BBSY" assertec lo BGIN® negated” ime was 35ns (miné no delay line would be needed for the
C-35 VME 1220A device, since 35 + 75 > 90. However, a 10 ns delay line would be required for the C-25 VME 1220A,

!

1
i i

o

")
‘OI

it

Ht‘mh

A

| O

wenon

£l G

APPENDIX B

FAULT INJECTION MODULE
SCHEMATIC DIAGRAMS

Ver. 1.0

<I¥MOV

|

¥V
*x¥Y439 < x¥y39 *PSAa <x()sQ
[—————]¥13S00N
*MOV1Q<a ¥AX x1sa <% S0
[0
x SO<t- —¥N31Qg 2NV ~1ZINV
*N3Q
*483 oy
*NOVLNI
¥OVI XN3AY
ns o8
- POl
SOl
—3I%xQHOM
ey |1y ook]
0= LB
*XPSON_—oa &clh.en_ n&cluam
N— | .= _ | _ b\ 6v
N2 z 2 2 AN
N—¢ ¢ € ¢ ¢ ¢
*¥PSONy —|—v v | —v v
—s — oy S s e S S
™ v P I\ ° 9T\
20l 1D
A > > <1 UWY/UVY
B T |
| i b) o | 1 Y | I Y |) 1 | [I N SR

X MOV <+ ,ﬁ.
-a < |] % STUSAS
_& \l& v__\.u(ko]_ .JOG \IN»_ <—N|_||

L1 u \llm o.ur L—1 € T xium
—1Z - ¥ | : o_ e
\nlnum H 402y ~ — .ILI&&
—1Y m kz_u ; ,
\Jm ﬁm v oo

_ \Jw i ¥ \)

UDd——— | M0 f—— mum._l
\\Hw &\m.l/m/) \ .Iuﬁ \
¢ Q|Jso_ |) y
¢ (N , §
\lmmm Ml/ , .
/s S wrs pe—
2 m : © <qUY

U9d <— oH// e\oJ_ d1a t—1 _MHI_ ¥ _ .
\ILN_. L—1¢ nH\\ \an :
‘o —l1vi v v | : :
\Jmé 2\ \\Hm< mml\ m\mmc om N
Y SY €\ 19 o vil g ml._ hﬂ
L—1S P ", o ; n

uvd 4 92 |/m<._\.3 s /. .

<} *smo_ _
Uq1/uv <t \) \ 3
an r B
i A0l
ve i gor weer | o
e _.w_ﬁ_ 7

R R A5 i 111 DTS ' SN I4'H SRIY - IO I

——
-—

11d

U A]
-
1-9|Dl
9]
@od <t 01 < N) |
(v} Q— _|09.|—AW|IL.
T ! To)
g 4
1-812I L 4 N.oA
1 <
; -0l
s- 10| g
2y s
’ 4 <jugd
x9OY | <I— OA 3
e -~ i amm//He O evl Mw Aﬁ//*_moh
v-10I | H— N\ ‘s
/I.mc n_nl/ /lmo mnj
N\ —ip ¥— /l.v RN
Hm SN Nl wl/
Em/lo SN b&,(xw I
L 9 4NSIve s ‘Muw
_ : <1XSV1
eor [a0 o
| s B Y | e - ,_
crosam o Tt D0 e o@mm o om o JTEF 0N I NEER 0w B

CMQA\ < N\

_ M : ¢ A.VOQ

9l 23 o1 Gy @

N1 AL o~ ~N—] Al P "E
£5d 1Sd
L L
IH a1 €H 21
® zl— ab 2
" Zam el ZHy Y S\
¢4 :
¢2Ol 02Ol

91 21 €-9|0l

—] ¢ @4 — 9
| —] o~ N\l 1y Iy

zsa | " 1 ose g —1 2-51D
L U |
N o] 1
v ¢ <av9d
yH LY €, GHY | e—les 531 NnoA b
62l £d
Cleat | 6o |]
N ﬁ <] UH
!
o gt s g B | ke ~ o
wwd T TR LT O oy oy o n Ay E W A B | B4 Tl |

UH <

*xMOV<a

_

/

Ud<g

/201 ||
' NAS]
oz |
— ¥ov1Q MOVLQ
— -
—
a0 €
T , 0d _rl\NI 9d H— /| BH
/ i I H
gvy Vv on SAS
é.l L3S 1353y |—1 ugisuv
ol3 X0 — ¥
-— MY /(| M2y |7
W . L NMN—] |/
| 613 9d T\ - | _ 8d —
— | Geol —
avo —\ |/
v89 —\ —
= _/
2id N —
bl N_ |__/]
- N\ "
| —
| — N N A v
113 vd N\ R4 | vd -/
S €] 2Ol Sy ¢ |1
gavo — —
N | |
x_woﬁ —Jlusd

CIA

/

*MOV < + 4
Geol | | £
/ _ N
| vva [, _ ® yovial | N2, ® owia
L/ g 49] g ¥
b v €94 zul—A N v (€9 znl— oK
gvo v vH \.m avo v vH SH SAS
vg9 yg9]
= v £ 13say i "] g e
%10 IJ az4 p N9 1
ovd | t ¢ MY I\ N Ll | My
- BAEMN
|— ¥ —1 g da
Al v € Y — “ad vy
RN Y — 0] 21—
avo v a €M\ gvo v af]
Va9 b v89 vi—1
—_— v L H// L m]\
ol
oed [_ 9 , M NZE ¢ S
g) N | —— ¥a
@ o . N g . H—~ V1
a v € e 1Y vd 2k
|~ ||||I®m“_ ¢®mo— | ¢<& - U led Nmo~ | b sy ¢ .Il\
Udeg— avo v — 2sd ﬁw v vumi
cSd vao , S2 S\ev1 el.mml L m_lo 5
] N
\ —J UuSd
V_G.moﬁ r *mmor ¥
seener € gomm oo e e | G
|) | R A R T T I I B P IR T O TR) TN) SIEI R

T

ol

b

"
ik

1N

T

it

[l

)

il

L N

n
il

my

T

Fault Injection Module
Parts List (1)

Ref No. | Part Number | Size | Description

IC1 SN74ALS520 20 | 8-bit Identity Comparator
IC2 SN74ALS520 20 | 8-bit Identity Comparator
IC3 SN74ALS138 16 | 3 to 8 Decoder

IC4-1 SN74ALS32 14 | Quad 2-Input OR Gates (1/4)
ICS VME 2000 24! | Slave Module Interface Device
ICeé SN74F374 20 | Octal D-Type Flip-Flops

IC7 SN74LS645-1 | 20 | Octal Bus Transceivers

IC8 MC68230 P8 48 | Parallel Interface/Timer (PIT-0)
IC9-1 SN74ALS04B 14 | Hex Inverters (1/6)

IC10-1 | SN74LS244 20 | Octal Buffers (1/2)

IC11 SN74ALS161B | 16 | 4-bit Binary Counter

Ri 82 | R Network, seven 4.7k} (1/7)
ICi2 SN74ALS520 20 | 8-bit Identity Comparator
ICi3 SN74ALS520 20 | 8-bit Identity Comparator
ICi4-1 | SN74ALS0O4B 14 | Hex Inverters (1/6)

IC14-2 | SN74ALS04B 14 | Hex Inverters (2/6)

IC14-3 | SN74ALS04B 14 | Hex Inverters (3/6)

IC14-4 | SN74ALS04B 14 | Hex Inverters (4/6)

IC14-5 | SN74ALS04B 14 | Hex Inverters (5/6)

ICi15-1 SN74ALS02 14 Quad 2-Input NOR Gates (1/4)
IC16-1 | SN74ALSO1 14 | Quad 2-Input NAND Gates (1/4)
IC17 SN74ALS153 16 | Dual 1 of 4 Data Selectors
IC18-1 | SN74ALS74A 14 | Dual D-Type Flip-Flops (1/2)
R2 8 R Network, seven 4.7k} (2/7)
DL1i RWTO50P 14 | 50ns Delay Line

1300mil 24 pin DIP
?Single-in-line package

L I | 1 (I

Fault Injection Module
Parts List (2)

Ref No. | Part Number | Size | Description

I1C9-2 SN74ALS04B 14 | Hex Inverters (2/6)

I1C9-3 SN74ALS04B 14 | Hex Inverters (3/6) .
IC15-2 | SNT4ALS02 14 | Quad 2-Input NOR Gates (2/4)
IC16-2 | SN7T4ALSO1 14 | Quad 2-Input NAND Gates (2/4)
IC19 SNT4ALS153 16 | Dual 1 of 4 Data Selectors

IC20 SN74ALS163 16 | Dual 1 of 4 Data Selectors

IC21 SN74ALS153 16 | Dual 1 of 4 Data Selectors

IC22 SN74ALS153 16 | Dual 1 of 4 Data Selectors

R3 8 R Network, seven 4.7k} (3/7)

R4 8 | R Network, seven 4.7k} (4/7)

RS 8 R Network, seven 4.7k{} (5/7)
IC23 MC68230 P8 | 48 | Parallel Interface/Timer (PIT-1)
1C24 SNT4LS449 16 | Bus Transceviers w/ Bit dir.
IC25 SN74L5449 16 | Bus Transceviers w/ Bit dir.
IC26 SN74LS449 16 | Bus Transceviers w/ Bit dir.
IC27 MC68230 P8 48 | Parallel Interface/Timer (PIT-2)
1C28 SN741.5449 16 | Bus Transceviers w/ Bit dir.
IC29 SN74LS449 16 | Bus Transceviers w/ Bit dir.
IC30 SN74L5449 16 | Bus Transceviers w/ Bit dir.
IC31 MC68230 P8 48 | Parallel Interface/Timer (PIT-3)
IC32 SN74L5449 16 | Bus Transceviers w/ Bit dir.
1C33 SN74L5449 16 | Bus Transceviers w/ Bit dir.
I1C34 SN74L5449 ié Bus Transceviers w/ Bit dir.
IC35 MC68230 P8 48 | Parallel Interface/Timer (PIT-4)
IC36 SN74LS449 16 | Bus Transceviers w/ Bit dir.
I1C37 SN74LS449 16 | Bus Transceviers w/ Bit dir.
IC38 SN74L5449 16 | Bus Transceviers w/ Bit dir.

U

!

g

N

|

(0
[

il

LN

{

g

LR

|
|

ait

mr

g

qme:

Ll

PORT (C)

TRIG
TRIG. CONTROL PULSE GENERATOR
T vee
GABs GBAs
~ Al B1
< |
~ A2 B2
b | | LS-446
(4 A3 B3
° |
a, — A4 B4
DR1 DR2 DR3 DR4
LS-446
GBAt | GABt | DRn | OPERATION
PORT (B)
H i X ISOLATION
H L H |[As TO B
B X L ISOLATION

FIG. FAULT INJECTION

NODULE (4-BIT)

BIT 1

BIT 2

BIT 3

BIT 4

OUTPUT

Additional Components for the New Experimental System

IR OSSP Fd THRN (NN ()

6!

Part No. | Manufacturer | Description Cost ($)

MZ 7500 | MIZAR GPIB Interface Board for 695.00
VMEDbus

MIZAR Single Cable for MZ 7500 75.00

Macll488 | IOtech GPIB Controller Board for 535.00
Mac II

PFG5105 | Tektronix Pulse Generator (demo) 2,471.25

PFG5105 | Tektronix Pulse Generator (new) 2,800.75

TM5006 | Tektronix Prog. Mainframe (demo) 851.25

FIM JHU 48ch Fault Injector

Mac II Apple Macintosh 11

SPARC | Sun Micro. SPARCstation work station |

e

] ' ir v
[I U
= Il !

e) VMEbus SYSTEM
1 SCS 1 Vo
! 1/F -¢ (0S-9/68000)
Lo meaaad
HDD FDD
(80XB) (3.57)
(Up to 8MB)
ESCSI E SRAM E FDC/ POWER
. 1 /F | (2MB) SCS1 (45V, £+12V)
YiEbus
CPU GP-18B FIM DAM
(MC68030) 1 /F
TRG
PULSE LOCAL BUS
RS-232 GPIB GPIB
PULSE cuUT
GEN (MC68000)
F— GP~-1B RS-232
1/F RS-232
Macll VT100

FAULT INJECTION EXPERIMENTAL CONFIGURATION

Targeted Features of the Fault Injection Module

¢ Fault Injector

— Provides 48 channels with bit-definable outputs using four PI/T
(MC68230) and twelve bus transceiver (74L5446) chips.

— Supports three output states (0, 1, and Z') on each channel.
= ~ 2ch pulse generator is installed as a source of fault injections.
- — Supports single/multiple faults of stuck-at-0/1 types with dura-
— tion varying from 40 ns to 99.9 ms.

¢ Word Recognizer

Eé ' — Provides a versatile trigger source for the fault injection and data
= acquisition.
= — Implements 16-bit word recognizer using a MC68230 PI/T and
- two 7415686 magnitude comparators.
%
o 1Z: High-impedance
%

i

R -

Ty

o

e

il

ik

ey o

[

o
[

T

'w iy
Wi

| ;m:m-

1 Wi s

IR

Certification Trails and Software Design for Testability

Dwight S. Wilson?
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21218

Gregory F. Sullivan!
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21218

Abstract

This paper investigates design techniques which may
be applied to make program testing easier. We present
methods for modifying a program to generate addi-
tional data which we refer to as a certification trail.
This additional data is designed to allow the program
output to be checked more quickly and effectively. Cer-
tification trails [14, 16]) have heretofore been described
primarily from a theoretical perspective. In this paper,
we report on a comprehensive attempt to assess experi-
mentally the performance and overall value of the certj-
fication trail method. The method has been applied to
nine fundamental, well-known algorithms for the fol-
lowing problems: convex hull, sorting, huffman tree,
shortest path, closest pair, line segment intersection,
longest increasing subsequence, skyline, and voronoi di-
agram. Run-time performance data for each of these
problems is given, and selected problems are described
in more detail. Our results indicate that there are many
cases in which certification trails allow for significantly
faster overall program execution time than a 2-version
programming approach, and also give further evidence
of the breadth of applicability of this method.

" Keywords: Software design for testability, software

fault detection, certification trails, error monitoring,
design diversity, data structures.

1 Introduction

We have examined a wide variety of fundamental
algorithms to determine how they can be redesigned
to allow for easier testability. To make the problem
of testing the correctness of the output of a program
more tractable we have found it is desirable to modify
the program so that it generates additional data which
we refer to as a certification trail. This additional data
is designed to allow the program output to be checked

'Research partially supported by NSF Grants CCR-8910569
and CCR-8908092 and an [BM Technology Interchange Program
Grant.

2Research partially supported by NSF Grant CCR-8910569
and an IBM Technology Interchange Program Grant.

3Research partially supported by NASA Grant NSG 1442 and
an IBM Technology Interchange Program Grant.

Paper 7.3
200

'N94- 36066 7
J /o0~ /._3

1/
Gerald M. Masson3 /)’ /
Dept. of Computer Science
Johns Hopkins University
Baltimore, MD 21218

more quickly and effectively. Our previous work on cer-
tification trails emphasized a theoretical perspective in
which we proved that the asymptotic time complexity
of the testing process could be reduced {14, 16). In
this paper, we report on implementations of the cer-
tification trail method so as to assess experimentally
with run-time data the performance and overall value
of the technique. We have implemented the certifica-
tion trail method for nine fundamental and well-known
algorithms of broad importance and applicability. For
each algorithm, we have produced three implementa-
tions: a version which produces the output; a version
which produces the output and generates a certifica-
tion trail; and a version which checks the output while
utilizing the certification trail. Specifically, algorithms
for the following problems are analyzed: huffman tree,
shortest path, sorting, closest pair, line segment in-
tersection, convex hull, longest increasing subsequence,
skyline, and voronoi diagram. The scope of the algo-
rithms considered gives credibility to the overall appli-
cability of the certification trail method. Furthermore,
comparisons of run-time data for each of the three ver-
sions of each of the algorithms considered reveal many
cases in which an approach using certification trails al-
lows for significantly faster overall program execution
time than a 2-version programming approach.

2 Introduction to Certification Trails

First, let us consider a basi¢c method which is used
to perform testing to detect software faults called N-
version programming [1, 2]. This method utilizes N
teams of programmers, each independently implement-
ing separate programs based on a problem specifica-
tion. The programs are executed on the same input and
the outputs are compared. Errors caused by software
faults are detected whenever the independently writ-
ten programs do not generate coincident errors. Thus
the technique exploits design diversity. Also, note that
the method can detect hardware faults which affect the
separate executions in distinct ways causing distinct
outputs. It is particularly valuable for detecting errors
caused by transient fault phenomena. The N-version
programming method can be used to detect faults af-

INTERNATIONAL TEST CONFERENCE 1993

0-7803-1429-8/93 $3.00 © 1993 IEEE

PRECEDING PAGE BIANK NOT FILMED

Primary Secondary
'-,’,r“v oo Execution Execution
— " ersto : r v ™
&
amming 1
Progr Compare
-1
Primary Secondary
. Execution Execution
i on
Certification ——

— , Tl Compare

i

R

’;i‘ure 1: Timeline Comparison of the Certification
5 Trail with 2-Version Programming

"

(S

“ ter & system has been put into production or it can be
- -~ "used to detect faultsin a testing phase prior to produc-
= tjon. If two teams are used then we refer to the method
"as 2-version programming,.
The certification-traijl technique is designed to pro-
vide similar capabilities for detecting software and
" bardware faults as 2-version programming but expend
“fewer resources. As mentioned above the central idea
. _ls to modify the first algorithm so that, with modest
“additional overhead, it leaves behind a trail of data
which we call a certification trail. This data is chosen
=80 that it can allow the second algorithm to execute
“-more quickly and/or have a simpler structure than the
first algorithm. As above, the outputs of the two exe-
* “tutions are compared and are considered correct only
*_if they agree. An illustration of typical execution times
“of 2-version programming versus the certification trail
method is given in Figure 1. We assume that the two
‘mplementations developed for 2-version Programming
*-dave approximately equal execution times. Note, how-
ever, that we must be carefu] in defining this method
= _r else its error detection capability might be reduced
Oy the introduction of data dependency between the
two Program executions. For example, suppose the first
- _rogram execution contains an error which causes an in-
orrect output and an incorrect trail of data to be gen-
“Frated. Further suppose that no error oceurs during the
execution of the second program. It still appears pos-
. .ble that the execution of the second program might
=3¢ the incorrect trajl to generate an incorrect output
which matches the incorrect output given by the execu-
= on of the first Program. Intuitively, the second execu-
Ebn would be “fooled” by the data left behind by the
t execution. The definitions we give below exclude
this possibility. They demand that the second execu-
=0 either generate a correct answer or signal that an
%20r has been detected.

[0

3 Formal Definition of a Certification
Trail

In this section we will give a formal definition of 3
certification trail and discuss some aspects of its real-
izations and uses.

Definition 3.1 A problem P is formalized as a rela-
tion, i.e., a set of ordered pairs. Let D be the domain
(that is, the set of inputs) of the relation P and let S
be the range (that is, the set of possible solutions). We
say an algorithm A solves a problem P iff for alld € D
when d is input to A then an s € S is output such that
(d,s)eP.

Definition 3.2 Let P:D . § be a problem. A soly-
tion to this problem using a certification trail consists of
two functions F, and Fy with the following domains and
ranges F1 : D — S x T and F:DxT— S U {error}.
T is the set of cerlification frails. The functions must
satisfy the following two properties:

(1) for all d € D there exists s € S and t € T such that
Fi(d) = (s,t) and F3(d,t) = 5 and (d, s)eP
(2)foralld € D and all ¢ € T either
(F2(d,t) = 5 and (d,5) € P) or F3(d, t) = ertor.

We also require that Fi and F; be implemented so
that they map elements which are not in their respec-
tive domains to the error symbol. Intuitively, the first
condition states that if both parts of our solution exe-
cute correctly, then their answers agree and are correct,
The second condition states that a correct secondary
execution will never produce an incorrect output, i.e.,
one that is not a solution to the problem.

The definitions above assure that the testing capabil-
ity of the certification-trail approach is similar to that
obtained with a 2-version programming approach dis-
cussed earlier. That is, if a software or hardware faylt
occurs during only one of the executions then either the
fault will be detected or the output will be a correct so-
lution to the problem. The examples in this paper will
indicate that this new approach can save overall execuy-
tion time.

4 Certification Trajl Examples

In the remainder of this paper we evaluate the use
of certification trails for nine classic problems in com-
puter science. We have implemented algorithms for
these problems together with other algorithms which
generate and use certification trails, In addition, we

Paper 7.3

OMAINAL PAGE m 201
OF POOR QUALITY

B

M

1

&
i

M i

L
U

i

il

o

-

N OR—
"wrwlq‘
ol

discuss a general technique for construction of certifi-
cation trails for algorithms using a wide range of data
structures. This technique is used to implement the
certification trails for several of our examples.

We provide a full description of the algorithm for the
convex hull problem which generates a certification trail
and a full description of the algorithm which uses that
trail. Because of space considerations the discussion
of the other algorithms is abbreviated. In some cases
references to previous publications or technical reports
which describe the algorithms more fully are given.

The algorithms we have chosen to implement are
not always the algorithms which have the smallest
asymptotic time complexity. Often the asymptoti-
cally fastest algorithms have large constants of pro-
portionality which make them slower on the data sizes
we examined. We modified and used some programs
from major software distributions such as quicker-sort
from a Berkeley Unix distribution. Fortune’s algo-
rithm for computing the Voronoi diagram was obtained
from an Internet site at AT&T Bell Labs. Other algo-
rithms were based on textbook discussions. It should
be stressed here that this research is continuing as
we further increase our corpus of algorithm and data-
structure implementations.

4.1 Explanation of timing data

We have collected timing data for the algorithms on
a Sun SPARCstation ELC with 16MB of RAM. The
system was run as a standalone machine in single user
mode during the timing experiments. Timing data was
obtained through the getrusage() system call. The user
times are reported in the data.

Much of the data presented in the timing table is
essentially self-explanatory relative to the certification
trail technique and algorithms considered. However, a
brief discussion of the table entries is appropriate.

The column labelled Basic contains timing data
which gives the execution time of the algorithm in pro-
ducing the output without the generation of the certi-
fication trail. All timing data is listed in seconds.

The Primary Ezecution (Prim. Ezec.) column gives
the execution time of the algorithm in producing the
output with the additional overhead of generating the
certification trail.

The Secondary Erecution (Sec. Ezec.) column gives
the execution time of the algorithm in producing the
output while using the certification trail.

The Percent Savings (% Sav.) column records
the percentage of the execution time savings which is
gained by using the certification trail method as com-
pared to 2-version programming approach. This as-

Paper 7.3
202

sumes that both versions take approximately the same
amount of time to execute.

The Speedup column is the ratio of the run times of
the Basic Algorithm and the Secondary Execution.

For the Huffman tree data, the input size for the
Huffman tree program is the number of nodes. Each
node is given a frequency, chosen uniformly from the
integers {1, 2, ..., n}. n was also selected to be the
number of nodes.

For the shortest path table, there are two numbers
associated with the input size, the first is the number of
vertices in the graph, the second the number of edges.
A graph with the required edges is selected uniformly
from the set of all such graphs, then tested for connect-
edness in order to assure that paths exist to all vertices.

For the geometric algorithms, the input size is the
number of points (or lines) in the original data set.
Point set input was generated by choosing points with
integer coordinates uniformly over a large square (typ-
ically 1,000,000 by 1,000,000 or larger square). For the
Line Segment Intersection problem, lines were gener-
ated by picking a line segment start point uniformly
from a large square and picking offsets for z and y
coordinates from a smaller range to give the end point
of the line segment. This was done to bound the line
length and avoid data sets resulting in a quadratic num-
ber of intersections.

Data for the longest increasing subsequence problem
was produced by generating a random permutation of
[1..N] for input size N.

Sorting was performed on an array of pointers to
structures. It was assumed that each structure con-
tains an extra integer field for use in generating the
certification trail. Sorting was performed on integer
keys, though the technique can be used with a more
complex key (in fact, using complex keys is very likely
to increase the speedup achieved). Integers were chosen
uniformly from interval [1..1, 000, 000, 000].

4.2 Convex Hull Example

The convex hull problem is fundamental in the field
of computational geometry. Our certification trail so-
lution is based on a convex hull algorithm due to Cira-
ham [6] called Graham’s Scan. For basic definitions in
computational geometry see the text of Preparata and
Shamos[11]. For simplicity in the discussion which fol-
lows we will assume the points are in general position,
e.g., no three points are collinear. It is not hard to
remove this restriction.

Definition 4.1 The conver hull of a set of points, 7T,
in the Euclidean plane is defined as the smallest convex
polygon enclosing all the points. This polygon is unique

-

€ and its vertices are a subset of the points in T'. It is
F gpecified by a counterclockwise sequence of its vertices.

o The algorithm given below constructs the convex
¥ pull incrementally in a counterclockwise fashion. The
frst step of the algorithm selects an “extreme” point
i and calls it p;. The next two steps sort the remaining
points. The order of the points is determined by the
dopes of the line segments formed by joining each point
F 10 p,. It is not hard to show that after these three steps
the points when taken in order, p1,p2,...,Pn, form a
b simple polygon; although this polygon may not be con-
" vex. The Graham Scan algorithm traverses this poly-
gon, removing points until the resulting polygon is con-
vex. The main FOR loop iteration adds vertices to the
' polygon under construction and the inner WHILE loop
t removes vertices from the construction. A point is re-
| moved when the angle test performed at line 6 reveals
that the angle at that vertex is obtuse. It is easy to
' demonstrate that when a point is removed, it must fall
within the triangle defined by three other points, p; and
§ the two points that were adjacent to the point removed.
i When the main FOR loop is complete the convex hull
b bas been constructed. The execution of this algorithm
F¥is demonstrated in Figure 2. For each removed point,
. the associated triangle is indicated in bold lines, and in
. the text below the diagram. Our certification trail relies
oh the fact that that these triangles can be determined
. quickly.

I
!
I e

{
i

"
o

y
il

I ‘I I
[

4 Algorithm CONVEXHULL(T)
F' Input: Set of points, T, in R?
4 Oxtput: Counterclockwise sequence of points in
_ R? which define the convex hull of T
. b Let p;, be the point with the largest
. - z coordinate (and smallest y to break ties)
For each point p (except p;) calculate
>+ the slope of the line through p; and p
~ Sort the points (except p;) from smallest
‘ » slope to largest. Call them pa,...,pn
E Y qi=pei=pr gai=pa m=3
3.8 FOR k=4tonDO
.. ¥ WHILE the angle formed by
" Qm-1,9m, Pk is > 180 degrees
f > DOm:=m-1END
d mi=m+1
9m ‘= Pk
9 END FOR
10 FOR i = 1 to m DO, OUTPUT(g;)
END FOR
END CONVEXHULL

l

r,‘ W

First execution: In this execution the code CON-
VEXHULL is used. The certification trial is generated

Figure 2: Convex hull example.

Point not on Three surrounding points

convex hull

P3 P1,P2,P4
Ps P1,P4, D6
pr P1,Ps, P8

by adding an output statement within the WHILE loop.
Specifically, if an angle of less than 180 degrees is found
in the WHILE loop test then the four tuple consisting
of gm,qm—1,P1, Pk is output to the certification trail.
The final convex hull points gy, ..., ¢m are also output
to the certification trail. Strictly speaking the trail out-
put does not consist of the actual points in R?. Instead,
it consists of indices to the original input data. This
means if the original data consists of p1, p2, . . -, pa then
rather than output the element in R? corresponding to
pi the number i is output.

Second execution: Let the certification trail con-
sist of a set of four tuples, (z,a1,b1,¢1), (%2, a2, b2, ¢2),
..., (zr,a,, b, c,) followed by the supposed convex hull,
1,92, - -, gm. The code for CONVEXHULL is not used
in this execution. Indeed, the algorithm is dramatically
different than CONVEXHULL.

1t consists of five checks on the trail data.

e First, it checks that there is a one to one correspon-
dence between the input points and the points in
{z1,-. 2z} U{q1,.. -, am}-

e Second, it checks that for each i € {1,...,r}, a;,
b;, and c¢; are among the input points.

e Third, the algorithm checks that for each i €
{1,...,r}, zi lies within the triangle defined by
a;,b;, and ¢;.

Paper 7.3
203

ORIGINAL PAGE 15
OF POOR QUALITY

Ll

LIS

i

g
i i

SRR
bl 14

U ET

o
i

!

Ly
L

| 4

i

'

) —

e
[YT

o Fourth, the algorithm checks that for each triple
of counterclockwise consecutive points on the sup-
posed convex hull, the angle formed by the points
is less than or equal to 180 degrees.

o Fifth, it checks that there is a unique point among
the points on the supposed convex hull which is a
local maxima. We say a point ¢ on the hull is a local
marima if its predecessor in the counterclockwise
ordering has a strictly smaller y coordinate and its
successor in the ordering has a smaller or equal y
coordinate.

If any of these checks fail then execution halts and
“error” is output. Otherwise the convex hull read from
the trail is output. As mentioned above, the trail data
actually consists of indices into the input data. This
does not unduly complicate the checks above; instead
it makes them easier. The correctness and adequacy of
these checks must be proven. A complete formal proof
is beyond the scope of this paper, instead a brief outline
of the proof will be given.

Using our formal definition of certification trails, let
D be the set of all finite planar point sets T. Let S
be the set of convex polygons, with vertices in coun-
terclockwise order (the restriction to counterclockwise
ordering makes the convex hull unique). Then the
problem we are considering is HULL : D — S where
HULL(T) is the polygon in S that forms the convex
hull of T.

The description of the algorithms above defines func-
tions F; and F;. We must show that both conditions of
Definition 3.2 hold. The following two lemmas, which
we state without proof, are required.

Lemma 4.2 Let P be a polygon on n poinis
P1,P2....Pn. P is a conver polygon iff P is simple
and each angle p;p;p: is less than or equal o 180 de-
grees, where i is in 1,2,..n, j = (i + 1) mod n, and
k=(i+2) modn.

Lemma 4.3 If P is a non-simple polygon, then either
P has more than one local mazima, or the interior angle
at some verier is grealer than 180 degrees.

These are deceptively simple statements. Though
they are intuitively obvious, a formal proof is difficult.
It is interesting to note that some computer graphics
texts give an incorrect test for determing convexity of
a polygon by omitting the check for simplicity required
by Lemma 4.2.

Recall that the first condition is:

For all d € D there exists s € S and ¢ € T such that
Fi(d) = (s,t) and F3(d,t) = s and (d,s) € P.

Paper 7.3
204

Intuitively, this means that if both executions per-
form correctly then they will both output the convex
hull of the input, which is unique. Note that genera-
tion of the certification trail does not affect the output
of the Graham Scan algorithm. Thus the condition
on Fy(d) is satisfied by the correctness of the Graham
Scan algorithm, the proof of which is well known [11].
To show that Fy(d,t) = s, note that a copy of s is con-
tained on the trail t. Our description of Fy(d, () states
that s is output unless one of the five checks above
fails. It is trivial to verify that the first three of these
checks must be satisfied. The fourth check cannot fail,
since the polygon described by s is convex (because
(d,s) € P). Similarly, if the fifth check fails, then the
polygon described by s has two local maxima, and this
is not possible for a convex polygon.

The second condition is:

For all d € D all t € T either (Fy(d,t) = s and
(d, s) € P) or F(d,t) = error.

Intuitively, this means that given an input and arbi-
trary trail, F3(d,t) produces a solution to the problem
or flags an error.

Our definition of F,(d,t) states that the polygon Q
stored on the trail is output unless one of the five checks
fails. We must therefore demonstrate that if all five
checks succeed, then Q is the convex hull of the input
points d. Let H be the convex hull of the points d,
The first condition guarantees that every point in d
is classified as a hull point or an interior point. The
second condition guarantees that the triangles used to
identify interior points are formed from input points,
and the third check verifies that the interior points are
indeed inside their respective triangles. Note that we
do not attempt to verify that the triangles used are the
ones that would be produced by Fi(d). In general, for
a given interior point, there may be several triangles of
input points in which it is contained. Together, the first
three conditions imply that all points in H are also in @,
since it is impossible for a hull point to be contained in
a triangle. Note that these three checks do not exclude
the possibility that interior points are present in Q, nor
do they guarantee that the ordering of the hull points in
Q is correct. The final two checks will accomplish this.
If the last two checks are satisfied, Lemma 4.3 states
that @ is simple, and therefore it must be convex by
Lemma 4.2.

Thus, Q is a convex polygon whose vertex set is a
superset of the vertices of H, i.e., H is contained in
T. This implies that no other point from the input
set may be a vertex of Q, since any input point that
is not a hull point is interior to H and therefore inte-
rior to Q. Finally, it is clear that the ordering of the
vertices of Q and H must be the same (although there

—might appear to be two possible orderings, clockwise
and counterclockwise, a clockwise ordering will fail the
fourth check). Therefore if all five checks succeed, then

_the output of F3(d,t) will be the convex hull of d.

- This demonstrates that the algorithms described
meet the conditions of Definition 3.2, and are therefore
a certification trail solution to the convex hull problem.

Time complexity: In the first execution the sort-
ing of the input points takes O(n log(n)) time where n is

. she pumber of input points. One can show that this cost

—dominates and the overall complexity is O(n log(n)).

It is possible to implement the second execution so
hat all five checks are done in O(n) time. The first two

__hecks may be done in linear time since the certification

Trail contains indices into the input data. The third

.nd fourth checks require a constant time calculation at

" “ach point. Finally, the uniqueness of the local maxima

18 clearly checkable in linear time.

Order-of-Magnitude Testing Speedup: It

" bould be noted that for the convex hull problem, we

~are seeing an order of magnitude speedup for reason-

able sized problems. We believe this offers a dramatic

~ emonstration of the efficiency of our proposed software

sting technique using certification trails in compari-
“son with the 2-version programming technique.

~ _ Size Basic | Prim. Exec. | Sec. % Speedup
(Also Gen. | Exec. | Sav.
Trail)
5000 0.64 0.67 0.08 41.41 8.00
10000 1.38 1.40 0.17 43.12 8.12
—25000 3.89 3.84 0.46 44.73 8.46
50000 8.44 8.50 0.85 44.61 9.93
00000 | 17.36 17.68 1.65 44.33 10.52
- Table 1: Convex Hull

i _This important problem has a massive literature. In
bems section we will discuss how to apply the certifi-
cation trail approach to the sorting problem. Let us
& "ume that the sorting algorithm takes as input an ar-
I_ of n elements and outputs an array of n elements.
The algorithm is supposed to place the data in non-
d--reasing order.
To design a certification trail algorithm we must dis-
er the nature of the data that should be included
in the certification trail to allow quick computation
onhe final output sorted array. Suppose that we de-
ti’ to use the output array itself as the certification
‘rail. We note that it is easy to check that this array is

‘0. on-decreasing order by simply performing a single

1y
s

i

pass over the array. Unfortunately, it is considerably
more difficult to make sure that this array contains ex-
actly the same elements as the original input array. In-
deed, this problem has a lower bound time complexity
of (n log(n)) in a comparison based model.

Because of this difficulty we use the permutation of
the elements defined by the input and output data ar-
rays as the certification trail. This permutation is com-
puted by attaching an Item Number field to the data
elements before sorting. The i-th item receives item
number {. After the elements are sorted, the permu-
tation from input to output is obtained by reading the
[tem Numbers from the elements in their new order.

The second execution reads the permutation from
the trail and verifies that it is a permutation on n el-
ements, i.e., that no numbers are repeated or omitted.
This permutation is used to rearrange the input ele-
ments in linear time. Finally the algorithm checks that
these elements are now in non-decreasing order.

Size Basic [Prim. Exec. | Sec. % T Speedup
(Also Gen. | Exec. | Sav.
Trail)

10000 0.28 0.30 0.04 | 39.29 7.00
50000 1.80 1.90 0.19 T 4194 9.47 |
100000 3.96 4.08 0.41 43.31 9.66
500000 23.95 24.69 2.14 | 43.99 11.19
1000000 | 50.23 51.57 438 | 44.31 11.47

Table 2: Sort

4.4 Certification Trails For Abstract Data
Types

Before we present the rest of our example algorithms
we discuss a general technique applicable to many al-
gorithms and data structures.

An abstract data type is a data object or set of data
objects together with a group of operations for manip-
ulating the object(s). Each operation takes a (possibly
empty) set of arguments, and some, but not necessarily
all, operations return answers. Many algorithms make
extensive use of abstract data types.

We describe a method for automatically generating
a certification trail for an algorithm which uses an ab.
stract data type. This is done by modifying the ab-
stract data type operations, so that during the first
execution they generate a certification trail, and dur-
ing the second execution they use the certification trail.
Otherwise, these operations are identical to the original
abstract data type operations, i.e., they take the same
type of arguments and have the same return types. The
object of creating and using the certification trail is to

Paper 7.3
OMGINAL PAGE IS 205

OF POOR QUALITY

. fh

1

i

i

allow a more efficient implementation of the abstract
data type during the second execution.

We illustrate this technique for the following ab-
stract data type which we call Ordered Collection. An
Ordered Collection will contain a set of pairs (i, z)
where i is an item number, and z is a real number value.
(This selection is made for simplicity of description, the
elements being stored could be more complex). No two
elements of the set may have the same item number,
though several items may have a common value. We
define a total ordering on pairs by (i,z) < (i',2') iff
r<z'orz=z'andi< 7

The following operations are defined on an Ordered
Collection:

INSERT(i,z) Add the element (i, z) to the set.

DELETE(i) Delete the element with item number i
from the set.

PREDECESSOR(:) Let (i, z) be the element in the
set with item number i{. This operation returns
its predecessor, that is, the largest pair less than
(i,2). A special value SMALLEST is returned if
(1, z) is the smallest element in the set.

MIN Return the smallest element in set.

NEAREST(z) Return the element from the set with
value closest to x. If there is a tie, return the
element with the smallest item number.

This small set of operations is being chosen for con-
creteness, several additional operations could be easily
defined. If an error occurs during any of these opera-
tions, for example, inserting pairs with duplicate item
numbers or attempting to delete a non-existent item,
then the program terminates indicating an error.

These operations may be modified to produce a cer-
tification trail during the first execution by modifying
the INSERT(i,z) and NEAREST(z) operations to do
the following (in addition to their normal function):

INSERT(i,z) After adding this element to the set,
perform a PREDECESSOR(:) operation and write
the itemn number of the answer to the certification
trail.

NEAREST(z) Write the item number of the answer
to the certification trail.

A typical implementation of an abstract data
type supporting the above operations would require
(nlog(n)) time to process a sequence of n operations.
By using the certification trail, we can achieve linear
time for n operations during the second execution. This

Paper 7.3
206

includes the time necessary to check the trail for cor-
rectness as well as use it.

The implementation of the Ordered Collection for
the second execution will be a structure called an in-
dexed linked list. This is a doubly linked list, along
with an array Items of pointers, indexed by item num-
ber. The i-th element in this array points to the list
node for the element with item number ¢ (or is NULL if
no element in the list has item number {). This allows
us to find an element in constant time given its item
number. The elements themselves are maintained in
ascending order (according to the pair ordering given
above) on a doubly linked list, i.e., each element has
pointers to its successor and predecessor. In addition
to the array, we maintain a variable Stari, which stores
the item number of the first element in the list.

The abstract data type operations for the second
execution are defined as follows:

INSERT (i,z) Read the item number p from the trail.
p is the item number that would be the predecessor
of (i,z) if it were in the set. J[tems[p] points to
the list node for the element with index p, call
this element (p, z,). We can insert (i, z) after this
node using ordinary list operations. Before doing
so, however, we make three checks:

i. Check that [tems[i] is currently NULL, i.e.,
there is not currently an element with item
number 1 in the set. .

ii. Check that (i, z) is greater than (p, z,).

‘tii. Check that (i, z) is less than the successor of
(P, zp)

If these checks are satisfied, then (i, z) may be in-
serted after (p,zp). Set [tems[i] pointing to the
list node for (i, z).

Note that special cases occur at the beginning and
end of the list. We omit the specifics of these cases,
mentioning only that Start must be updated for
insertions at the front of the list.

DELETE(:) Check that ltems[i] is not NULL, i.e.,
there is an element with item number i currently
in the set. If so, remove it from the linked list,
and set Jtems[i] to NULL. If we remove the first
element of the list we must also update Start.

PREDECESSORC(i) Items[i] points to the element
with item number i, and its predecessor may be
found by following the appropriate pointer.

MIN The variable Start indicates the item number of
the first element on the list, i.e., the minimum el-
ement. [tems[Start] therefore points to this ele-
ment.

o i

NEAREST(::) Read the index i from the trail
[tems[i] points to the element having this item
number, call it (i, v). To verify that this is the cor-

"

rect answer we will have to check one of its neigh-
« . bors. If v < z, then only the successor of (i, z)
£: could have a value closer to v. Otherwise, only the
= predecessor is a candidate. Check the appropriate
. neighbor.
= Although our example uses elements that contain

jtem numbers, it is not necessary that the abstract data
ype be defined in this way. The insert operation of an

Z ibstract data type may be modified to tag elements
with item numbers as they are inserted.

. . Variations on this scheme are possible. For exam-
- sle, by modifying DELETE(i) and NEAREST(z) op-
Setations so that they also write the item numbers of
_predecessors to the trail, it is possible to use a singly
“inked list durmg the second execution. More sophis-
=icated schemes, involving marking list nodes for dele-
tion and delayed checks, allow the use of singly linked
= ists without requiring DELETE(i) and NEAREST(z)
__o produce predecessor information.
The technique in this example generalizes to other
~ abstract data types supporting a predecessor operation.
= n fact, a somewhat weaker condition often suffices; it
"ls sufficient that the specific implementation of the ab-
stract data type allow the predecessor of an element
E 0 be found at the time the element is inserted. The
Eabstract data type itself need not support a predeces-
sor operation. This technique is used in four of our
:xample algorithms.

Using this technique, it is possible to reuse the first
“execution code, except for the code implementing the
abstract data type operations. One advantage of this

s that it may be possible to add extra checking to such
-code such as bounds checking and checks on pointer

references, that may be too expensive to include in the
= _irst execution. Of course, the two programs may be
=leveloped separately as long as the specifications agree

on the use of the abstract data type.
- - Space does not permit a full proof of correctness of
= his scheme. A proof proceeds by establishing the fol-
Towing invariants on the indexed linked list used in the
second execution.

‘!!' rm

v

\! Im

P

i. The pairs in the linked list are in order from small-
est to largest.

. Each element of the Items array is either NULL or

£

points to one of the nodes in the linked list.
= Uii. If [tems[i] is not NULL, then the list node pointed
o= o by it stores an element with item number i.
=

(Note that this implies that each list node is
pointed to at most once).

iv. Every node in the list is pointed to by some item
in Items(i).

v. Startis the item of the first element in the list.

These conditions are clearly satisfied by an indexed
linked list containing no elements (i.e., before any oper-
ations have been performed). Inspection of operations
that query the list (MIN and NEAREST for example)
shows that they function correctly if the above condi-
tions are met. It is easy to prove correctness of the
certification trail by demonstrating that the operations
maintain a one to one corresponce between the pairs
in the linked list and the elements in the abstract data
type and that the above invariants are preserved.

4.5 Shortest Path Example

This is another classic problem which has been ex-
amined extensively in the literature. Our approach is
applied to a variant of the Dijkstra algorithm (3] as
explicated in [17]. We are concerned with the single
source problem, i.e., given a graph and a vertex s, find
the shortest path from s to v for every vertex v.

The algorithm for this problem which has the fastest
asymptotic time complexity uses fusion trees and is
given in [5]. This algorithm however appears to have
a large constant of proportionality and therefore we do
not use it.

We use the techniques just discussed to implement
the certification trail for this problem. A full descrip-
tion may be found in a technical report [15).

Size Basic | Prim. Exec. | Sec. % Speedup
(Also Gen. Exec. | Sav.
Trail)
100,1000 0.04 0.05 0.02 12.50 2.00
250,2500 0.15 0.16 0.06 26.67 2.50
500,5000 0.31 0.33 0.11 29.03 282
1000,10000 0.70 0.76 0.23 29.29 3.04
2000,20000 1.58 1.67 0.45 32.91 3.51
2500,25000 2.06 2.15 0.55 34.47 3.75

Table 3: Shortest Path

4.6 Huffman Tree Example

This is another classic algorithmic problem and one
of the original solutions was found by Huffman([7]. It
has been used extensively to perform data compression
through the design and use of so called Huffman codes.
These codes are prefix codes which are based on the

Paper 7.3
OAIGINAL PAGE IS 207
OF POOR QUALITY

i
|
=
- =

N

€l |

r
i

I
il

It
i

Uil

il

repm

1

bl

!

Huffman tree and which yield excellent data compres-
sion ratios. The tree structure and the code design are
based on the frequencies of individual characters in the
data to be compressed. Here we are concerned exclu-
sively with the Huffman tree. See [7] for information
about the coding application.

Definition 4.4 The Huffman tree problem is the fol-
lowing: Given a sequence of frequencies (positive inte-
gers) f(1], f[2], ..., f[n], construct a tree with n leaves
and with one frequency value assigned to each leaf so
that the weighted path length is minimized. Specif-
ically, the tree should minimize the following sum:
Y or.eLear len(i)f[i] where LEAF is the set of leaves,
‘len(?) is the length of the path from the root of the tree
to the leaf [;, f[i] is the frequency assigned to the leaf
L.

A full description of the method we employ to gener-
ate and use a certification trail is detailed in a technical
report [15].

Size | Basic | Prim. Exec. | Sec. % Speedup
(Also Gen. | Exec. | Sav.
5000 081 | 087 0.16 36.42 5.06
10000 1.76 1.86 0.33 37.78 5.33
25000 6.01 6.30 1.02 39.10 5.89
50000 | 10.62 11.14 1.70 39.55 6.25

Table 4: Huffman tree

4.7 Other problems

We report timing data for five other problems, the
“Manhattan skyline” problem, computation of Voronoi
diagrams, longest increasing subsequence, the closest
pair problem, and line segment intersection. Space per-
mits only a brief description of these problems, rather
than a full exposition of the certification trail tech-
niques used.

The “Manhattan skyline” problem is: Given a set
of rectangles with collinear bottom edges, compute the
polygonal outline of the union of the rectangles [9].

The Voronoi diagram is a fundamental concept in
computational geometry [11]. Given a set of points P
in the plane, the Voronoi diagram is a partition of the
plane into regions such that each region consists of all
points closer to a given p € P than to any other other
point in P. Computation of the Voronoi diagram is
an important step in many problems involving point
location.

The next problem we consider is, given a sequence
of integers, find the longest (not necessarily unique)
strictly increasing subsequence.

Paper 7.3
208

Size | Basic | Prim. Exec. | Sec. Speedup
(Also Gen. | Exec. | Sav.
Trail)
1000 0.27 0.26 0.12 29.63 2.25
5000 1.68 1.65 0.57 34.32 2.96
10000 | 3.91 3.72 1.14 37.85 3.43
15000 | 6.08 5.78 1.77 37.91 3.44
20000 | 8.53 8.27 2.33 37.87 3.66

Table 5: Skyline

Size | Basic | Prim. Exec. | Sec. % Speedup
(Also Gen. | Exec. | Sav.
Trail)
100 0.04 0.04 0.03 12.50 1.33
500 0.24 0.26 0.19 6.25 1.26
1000 0.51 0.51 0.39 11.76 1.31
5000 2.75 2.82 2.03 11.82 1.35
10000 | 5.79 5.89 4.06 14.08 1.43
50000 { 40.15 40.63 22.00 | 22.00 1.83
Table 6: Voronoi Diagram
Size Basic | Prim. Exec. | Sec. % Speedup
(Also Gen. | Exec. | Sav.
Trail)
10000 0.13 0.14 0.04 30.77 3.25
50000 0.78 0.81 0.22 33.97 3.55
100000 | 1.61 1.70 0.44 33.54 3.66
500000 9.17 9.32 2.22 37.08 4.13
1000000 | 18.66 19.58 4.46 35.58 4.18

Table 7: Longest Increasing Subsequence

Given a set of points P in the plane, the Closest
Pair problem is that of finding the pair of points with
minimum distance over all pairs in the set.

Size Basic | Prim. Exec. | Sec. % Speedup
(Also Gen. | Exec. | Sav.
Trail)
10000 | 0.26 0.27 0.07 | 3462 | 371
50000 1.45 1.55 0.36 34.14 4.03
100000 | 3.06 3.26 0.72 34.97 4.25
500000 | 16.84 18.02 3.62 35.75 4.65

Table 8: Closest Pair

Given a set of line segments in the plane, the line
intersection problem is the problem of determining all
intersections of line segments in this set.

For the first four problems, algorithms running in
O(nlog(n)) time were implemented for the first execu-
tion. The second execution, using certification trails,
runs in linear time. The first execution algorithm used
for line intersection runs in (O((k + n)log(n)) time
where k is the number of intersections and n the num-
ber of points. The second execution runs in O(k + n)
time. Note that k may be quadratic in n.

- e | Basic | Prim. Exec. | Sec. % Speedup
— rg"—' (Also Gen. | Exec. | Sav.
Trail)

7000 | 0.47 0.49 0.04 | 4382 11.75

3500 | 1.45 1.53 0.12 | 43.10 12.08
- 3000 | 3.3 347 026 4399 [1281

10000 | 7.72 7.88 060 | 4508 | 12.87
o J@_J 24.00 24.12 1.75 [4610 | 13.71
— Table 9: Line Segment Intersection

§ Concluding Discussion

Certification trails have heretofore been discussed
principally from a theoretical perspective. In this pa-
__per we have presented experimental timing data which
illustrates the advantages of the certification trail tech-
nique for software testing over the 2-version program-
ming technique. We have further presented techniques
“and analytical results for several new algorithms which
further support the significance of the certification trail

_ technique by demonstrating its broadening applicabil-
‘—ity. It should be appreciated that the seope of our
experimental investigation is not limited to the algo-

- ithms considered here; numerous other algorithms we
yave considered could have been discussed, and we con-
“tinue to work on new applications. It should also be
nointed out that in addition to the timing experiments
eported here, software fault injection experiments have
—ulso been conducted which verify the detection capabil-
ities of the certification trail method. The breadth of
pplicability of the certification trail technique contin-
;_u to expand along with the credibility of its advan-
tages. Increasingly, the certification trail method can
_+e viewed as a competitive software testing alternative.

References

—.1] Avizienis, A., “The N-version approach to fault toler-
ant software,” /EEE Trans. on Software Engineering,
vol. 11, pp. 1491-1501, Dec., 1985,

2] Chen, L., and Avizienis A., “N-version programming:
a fault tolerant approach to reliability of software op-
eration,” 1978 Fault Tol. Comp. Symp., pp. 3-9, IEEE
Computer Society Press, 1978,

'T?] Dijkstra, E. W., “A note on two problems in connexion
with graphs,” Numer. Math, 1, pp. 269-271, 1959.

__] Fortune, S. “A Sweepline Algorithm for Voronoi Dia-
grams,” Algorithmica, pp. 153-174, 2, 1987.

| Fredman, M. L., and Willard, D. E., “Trans-

= dichotomous algorithms for minimum spanning trees
and shortest paths,” Proc. 31s¢t JEEE Foundations of
Computer Science, pp. 719-725,1990.

i

P

[6] Graham, R. L., “An efficient algorithm for determining
the convex hull of a planar set”, Information Process.
ing Letters, pp. 132-133, 1, 1972.

(7) Huffman, D., “A method for the construction of min-
imum redundancy codes”, Proc. IRE, pp 1098-1101,
40, 1952.

[8] Johnson, B., Design and analysis of fault tolerant dig.
ital systems Addison-Wesley, Reading, MA, 1989,

[9] Manber U., Introduction to Algorithms Addison-
Wesley, Reading, MA, 1989,

(10] Nievergelt, J., and Hinrichs, K. H., Algorithms and
Data Structures With Applications to Graphics and
Geometry, Prentice Hall, NJ 1993

[11] Preparata F. P., and Shamos M. L., Computational ge-
ometry, Springer-Verlag, New York, NY, 1985,

12] Sedgewick, R., “Implementing quicksort programs,”
4
Comm. of the ACM, pp. 847-857, 21(10), 1978,

{13] Siewiorek, D., and Swarz, R., The theory and practice
of reliable design, Digital Press, Bedford, MA, 1982.

[14] Sullivan, G.F., and Masson, G.M., “Using certification
trails to achieve software fault tolerance,” Digest of the
1990 Fault Tolerant Computing Symposium, pp. 423-
431, IEEE Computer Society Press, 1990,

[15] Sullivan, G.F., and Masson, G.M., “Using certifica-
tion trails to achieve software fault tolerance,” De.
partment of Computer Science Technical Report JHU
89/26, Johns Hopkins University, Baltimore, Mary-
land, 1989,

[16] Sullivan, G.F., and Masson, G.M., “Certification trails
for data structures,” Digest of the 1991 Fault Tolerant
Computing Symposium, Pp. 240-247, IEEE Computer
Society Press, 1991,

(17] Tarjan, R. E., Dats Structures and Network Algo-
rithms, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1983.

B,

e

ONGINAL Page g
F POOR QuALTY

Paper 7.3
209

Imr‘ -

N94- 36067

Experimental Evaluation of Certification Trails using Abstract
Data Type Validation

Dwight S. Wilson'
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21218

Abstract

Certification trails are a recently introduced and
promising approach to fault-detection and fault-
tolerance [11, 12]. Recent experimental work [13]
reveals many cases in which a certification-trail ap-
proach allows for significantly faster program execu-
tion time than a basic time-redundancy approach. Al-
gorithms for answer-validation of abstract data types
are presented in [12] and allow a certification trail ap-
proach to be used for a wide variety of problems. In
this paper, we report on an attempt to assess the per-
formance of algorithms utilizing certification trails on
abstract data types. Specifically we have applied this
method to the following problems: heapsort, Huffman
tree, shortest path, and skyline. Previous results used
certification trails specific to a particular problem and
implementation. The approach in this paper allows
certification trails to be localized to “data structure
modules,” making the use of this technique transpar-
ent to the user of such modules.

Keywords: Software fault tolerance, certification

trails, error monitoring, design diversity, data strue-
tures.

1 Introduction

To explain the essence of the certification trail tech-
nique for software fault tolerance, we first discuss 2-
version programming [4, 2). Using 2-version (or more
generally, N-version) programming, two (or N) im-
Plementations of an algorithm are executed on a given
input, and the results compared. If the outputs agree,
they are accepted, otherwise an error is flagged. This
technique will detect a variety of software faults as well
as transient hardware faults. A variation of this tech-
nique is to execute a single program twice and compare

! Rescarch partially supported by NSF Grants CCR-8910569
and IBM Technology Interchange Program Grant.

?Rescarch partially supported by NS -
and CCR. 59006092, y supported by NSF Grants CCR-8910569

JResearch partially supported by NASA Grant NSG 1442.

0730-3157/92 $3.00 © 1992 [EEE

“Pm PAGE BLANK NOTV FILM"D

Gregory F. Sullivan?
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21218

Gerald M. Masson®
Dept. of Computer Science
Johns Hopkins University

Baltimore, MD 21218

results, this is called time redundancy. Although there
are a few softiware faults that may be detected using
time redundancy (e.g., uninitialised pointer errors), it
4s more effective in catching transient faults.

The certification trail technique is designed to
achieve similar types of error detection capabilities but
expend fewer resources. The central idea, is to modify
the first algorithm so that it leaves behind a trail of
data which we call a certification trail. The second
algorithm may then make use of this data, which is
chosen so that the algorithm executes more quickly
and/or has a simpler structure than the first algo-
rithm. As above, the outputs of the two executions
are compared and are considered correct only if they
agree. Note, however, we must be careful in defining
this method or else its error detection capability might
be reduced by the introduction of data dependency
between the two algorithm executions. For example,
suppose the first algorithm execution contains a er-
ror which causes an incorrect output and an incorrect
certification trail of data to be generated. Further sup-
pose that no error occurs during the execution of the
second algorithm. It appears possible that the execu-
tion of the second algorithm might use the incorrect
trail to generate an incorrect output which matches
the incorrect output given by the execution of the first
algorithm. Intuitively, the second execution would be
“fooled” by the data left behind by the first execution.
The definitions we give below exclude this possibility.
They demand that the second execution either gener-
ates a correct answer or signals the fact that an error
has been detected in the data trail.

Early work on the certification trail focused on cre-
ating trails for specific implementation of problems.
For example the trail given in [11] for the convex hull
problem is specific to the Graham scan algorithm. In
general, the two algorithms used in this approach can
be quite different. A more recent approach is to con-
struct a certification trail for an abstract data type-
That is, given the answers to operations allowed on
that type, our algorithm checks the correctness of
these answers. This method has the advantage that
the certification trail techniques are localised to the

- outines implementing data structure operations, and
nay then be applied to a wide variety of problems
=without special coding. In many cases it may be pos-
sible to use existing code with only minor modifica-
jons. Code using these routines is run twice, the first
—.ime generating the trail, the second time using it. Al
ternately, the trail checking may be done, in paralle],
".e., we perform the checking as the trail is being gen-
_:rated. A programmer using a library of these routines
need not be familiar with certification trail techniques.
Object oriented programming techniques may be par-
:icularly useful for implementation of such “certified”
~data types.

-—3 Formal Definition of a Certification
Trail

2~ In this section we will give a formal definition of a
certification trail and discuss some aspects of its real-
“sations and uses.

“Definition 2.1 A problem P is formalised as a rela-
_ tiom, i.e., a set of ordered pairs. Let D be the domain
: (that is, the set of inputs) of the relation P and let
LS be the range (that is, the set of solutions) for the

problem. We say an algorithm A solves a problem P
_ff for all d € D when dis input to A thenan s € S is
__output such that (d,s) € P.

 Definition 2.2 Let P : D — S be a problem. A
- solution to this problem using a certification trail con-
==sists of two functions F; and F; with the following do-
mainsnndungaﬁ:D—chTandF;:DxT—*
S U {error}. T is the set of certification trails. The
__functions must satisfy the following two properties:

(1) for all d € D there exists s € S and there
exists t € T such that
- Fy(d) = (s,1) and F3(d,t) = s and (d,s) €P
(2) forald€ D and forall t €T
cither (F3(d,t) = s and (d,s) € P)
= 2 or F;3(d,t) = error.

We also require that F; and F; be implemented
=30 that they map elements which are not in their re-
spective domains to the error symbol. The definitions

- ‘above assure that the error detection capability of the
-_certification trail approach is comparable to that ob-
tained with the simple time redundancy approach dis-

_ cussed earlier. (That is, if transient hardware faults
__occur during only one of the executions then cither an

error will be detected or the output will be correct.)
It should be further noted, however, the examples to
be considered will indicate that this new approach can
also save overall execution time.

3 Answer Validation Problem for Ab-
stract Data Types

Our general approach to applying certification
tzails uses the concept of an abstract data type. Some
examples of abstract data types are given later in this
paper. Here we mention some important common
properties and give a short illustration. Each abstract
data type has a well defined data object or set of data
objects. Each abstract data type has a carefully de-
fined finite collection of operations that can be per-
formed on its data object(s). Each operation takes s
finite number of arguments (possibly sero). In addi-
tion, some but not all operations return answers. An
example of an abstract data type is a priority queue.
The data object for a priority queue is an ordered pair
of the form (i,k) where i is an item number and k is
a key value. A priority queue has two operations: in-
sert(i,k) and delmin. The insert operation has two
arguments: item number i and key value k. The in-
sert operation does not return an answer. The delmin
operation has no arguments, but it does return an an-
swer. The precise semantics of these operations are
given later in this paper.

For each abstract data type we may define an an-
swer validation problem. Intuitively, the answer vali-
dation problem consists of checking the correctness of
a sequence of supposed answers {o a sequence of op-
erations performed on the abstract data type. More
formally, the input to the answer validation problem
is a sequence of operations on the abstract data type
together with the arguments of each operation. In
addition, the sequence contains the supposed answers
for each of the operations which return answers. In
particular, each supposed answer is paired with the
operation that is supposed to return it.

The output for the answer validation problem is the
word “correct” if the answers given in the input match
the answers that would be generated by actually per-
forming the operations. The output is the word “in-
correct” if the answers do not match. It is also useful
to allow the output word to say “ill-formed”. This out-
put is used if the sequence of operations is ill-formed,
¢.g., an operation has too many arguments or an ar-
gument refers to an inappropriate object.

The answer validation problem is similar to the idea

l ey

- —— . —
rm "o

L

Kl

of an acceptance test which is used in the recovery
block approach [10] to software fault tolerance. The
main difference is that an answer validation problem
is dependent upon a sequence of answers, not just an
individual answer. Hence, if an incorrect answer ap-
pears in the sequence, it may not be detected imme-
diately. It is guaranteed, however, that an incorrect
will be detected at some point during the processing
of the entire sequence. By allowing for this latency in
detection, it is possible to create a much more efficient
procedure for solving the answer validation problem.

The most important aspect of the answer validation
problem is the fact that is is often possible to check the
correctness of the answers to a sequence of operations
much more quickly than actually calculating what the
answers should be from scratch. In other words, the
answer validation problem has a smaller time com-
plexity than the original abstract data type problem.
For example, to calculate the answers to a sequence
of n priority queue operations takes f}(n log(n)) time
in the decision tree model; however, it is possible to
check the correctness of the answers in only O(n) time
[12]. This speed is very useful in fault-detection ap-
plications.

It is possible to run an answer validation algorithm
for some abstract data type concurrently with some
algorithm which uses the abstract data type. The an-
swer validation algorithm could act as a monitor mak-
ing sure that all interactions with the abstract data
type are handled correctly. This is valuable because
many algorithms spend a large fraction of their time
operating on abstract data types. Note, the overhead
of this monitor is less than the overhead of actually
performing the data type operations twice.

4 Schema for using Certification Trails

Suppose that we have developed an efficient solu-
tion to the answer validation problem for some ab-
stract data type. By efficient we mean the time com-
Plexity of the answer validation problem is smaller
than the time complexity of the original abstract data
type problem. Further, suppose that we wish to run
an algorithm, say A, which uses that abstract data
type. To apply the certification trail method we can
use the following schema to yield the two executions:

First Execution:

Execute algorithm A.

Each time an abstract data type operation is per-
formed. Append to the certification trail the identity
of the operation, the arguments and the answer.

302

Second execution:

Phase One:
Validate the correctness of the operations and sup-
posed answers given in the certification trail. If the
validation returns “incorrect” or “ll-formed” then
output “error” and stop. Otherwise, continue.

Phase Two:

Execute algorithm A.

Each time an abstract data type operation is per-
formed. Read the next entry in the certification trail.
Make sure that the operation and the arguments in the
certification trail agree with those requested in the al-
gorithm. If not output “error™ and stop. Otherwise,
use the answer given in the certification trail and con-
tinue.

This schema can yield execution times which are
significantly faster than the execution time obtained
by running algorithm A twice. Yet the schemes yield
comparable fault detection capabilities. Note, the first
execution can be slower than a simple execution of al-
gorithm A since it must output a certification trail.
However, the second execution can be significantly
faster than a simple execution of the algorithm since
the interactions with the abstract data type take less
time overall. The net effect can yield a major speed-
up.

Suppose an algorithm uses multiple abstract data
types and suppose there are efficient answer validation
algorithms for each of these abstract data types. It is
casy to see how our method generalises. We can leave
behind a generalised certification trail which consists
of a seperate certification trail for each of the abstract
data types. The effect on the speed up of the second
execution will be cumulative.

5 Generalized Priority Queue

We now describe a somewhat general abstract data
type. We are able to solve the answer validation prob-
lem for restricted versions of this data type. The data
consists of a set of ordered pairs. The first element in
these ordered pairs is referred to as the item number
and the second element is called the key value. Or-
dered pairs may be added and removed from the set,
however, at all times the item numbers of distinct or-
deted pairs must be distinct. It is possible, though,
for multiple ordered pairs to have the same key value.
In this paper the item numbers are integers between
1 and n, inclusive. Our default convention is that ¢ is

"an item number, k is & key value and A is a set of or-

dered pairs. A total ordering on the pairs of a set can
— be defined lexicographically as follows: (i, k) < (i, &')

if h < k' or (k = k' and i < i'). The abstract data
" types we will consider support a subset of the following
__operations.

member(i) returns a boolean value of true if the set
- contains an ordered pair with item number i, oth-
erwise returns false.

insert(i, k) adds the ordered pair (i, k) to the set. We
require that no other pair with item number i be
in the set.

delete(i) deletes the unique ordered pair with item
number i from the set. We require that a pair
with item number i be in the set initially.

changekey(i, k) is executed only when there is an or-
dered pair with item number i in the set. This

i1

pair is replaced by (i, k).
. _deletemin returns the ordered pair which is smallest
= according to the total order defined above and
(]

deletes this pair. If the set is empty then the
token “empty” is returned.

min returns the ordered pair which is smallest accord-
ing to the total order defined above. I the set is
empty then the token “empty” is returned.

max and deletemax these operations are similar to
min and deletemin, using the largest element in-
stead of the smallest one.

EL

— If an operation violates one of the requirements de-
= scribed above then it is considered to be ill-formed.
Also, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.
= Many different types and combinations of data
structures can be used to support different subsets of
2 these operations efficiently. Specifically we aze inter-
I ested in allowing the insert, delete, min, and deletemin
operations. It is possible to process a sequence of O(n)
- operations in O(nlog(n)) with implementations using
— heaps or balanced search trees such as AVL trees (1],
= red-black trees [6] or b-trees [3]. Answer validation
of these operations can be performed in O(n) time

12, 13].

I

6 Examples of the use of Data Struc-
ture Certification

In this section we evaluate the use of certification
trails for data structures as applied to four well-known

303

and significant problems in computer science: sorting,
the shortest path tzee problem, the Huffman tree prob-
lem, and the skyline problem. We have implemented
basic algorithms for these problems and algorithms
which generate and use certification trails. Timing
data was collected using « SPARCstation ELC.

The timing information reported in the tables con-
sists of the run time of the basic algorithm (i.e., no
certification trail), the run time of the trail-generating
algorithm, the run time of the trail-using algorithm,
the percentage savings of using certification trails, and
the speedup achieved by the second phase of the certi-
fication trail method. The percentage savings is com-
puted by comparing the total run time of algorithms
for generating and using trails against twice the run
time of the basic algorithm. The speedup is computed
by dividing the run time of the basic algorithm by the
run time of the algorithm that uses the certification
trail.

Apart from the data structures, the implementa-
tion of both phases of the certification trail version of
each algorithm is nearly identical to the implementa-
tion of the basic version. The only difference in the
code for the two phases is a parameter passed to the
data structure code indicating whether a certification
trail should be generated or used. All code implement-
ing the certification trails is localised to the modules
implementing the data structures, allowing the gener-
ation and use of the trail to be transparent to the user
of these modules. Due to space constraints only an
abbreviated discussion of the algorithms is given.

6.1 Heapsort

Sorting is a fundamental operation in computer sys-
tems, and there exist several sorting algorithms. Sort-
ing may be implemented with a priority queue (or
more specifically, a heap) by inserting all elements
and performing deletemin operations until the queue
is empty.

Input data was generated by creating sets of inte-
gers chosen uniformly from the interval [0, 10000000).
Timing results are based on fifty executions at each
input size.

8.2 HBuffman Tree

Given a sequence of frequencies (positive integers),
we wish to construct a Huffman tree, i.c., a binary tree
with frequencies assigned to the leaves, such that the
sum of the weighted path lengths is minimised. This
is & classic algorithmic problem and one of the original
solutions was found by Huffman [7]. It has been used

ORIGINAL PAGE

Of POO

Sise ~ Basic Generate | Uss | % Javing | Speedup Sise Basic Generste | Use % Saving | Specdup
Algorithm Trail Trail Algorithm Trail Trail
10000 0.44 0.48 0.1 3630 4.00 330,3500 0.18 014 [0.06 3353 350
30000 0.98 1.00 0.33 1] 438 $00,5000 0.38 0.33 0.13 3571 3.60
§0000 .71 3.80 0.60 37.37 453 760,7600 0.56 0.53 0.19 36.61 308
100000 587 .08 138 37.99 417 1000,10000 0.70 0.73 0.38 37.97 316
300000 3.1 13.91 347 39.50 5.18 3000,20000 .74 1.68 0.853 37.64 .35
300000 19.67 30.36 3.73 30.04 5.37 $00,35000 373 308 | 0.68 381 343
Table 1: Heapsort Table 3: Shortest Path
Sise Bu_k Generate | Use | % Saving | Speedup
Algorithm | Trail | Trail bers of T are examined, and the vertex v, with the
5000 0.58 (X3 0.14 3783 3 . .
16000 o.83 087 0.39 013 388 minimum path length is removed from T and added to
:°°°° :z: 1.90 061 | “-;' 1.93 S. A data structure that supports insert, delete, and
100000 1078 l‘,‘_"o, ::: :::1: ::: deletemin can be used to i'mplement this algorithm.
1850000 1670 | 1787 | 466 | 8384 338 Input graphs of |V| vertices and |E| edges were gen-

Table 2: Huffman Tree

extensively in data compression algorithms through
the design and use of so called Huffman codes. The
tree structure and code design are based on frequencies
of individual characters in the data to be compressed.
In this paper we are concerned only with the Huff-
man {ree, the interested reader should consult [7] for
information about the coding application.

The Huffman tree is built from the bottom up and
the overall structure of the algorithm is based on the
greedy “merging” of subtrees. An array of pointers,
ptr, is used to point to the subtrees as they are con-
structed. Initially, n single vertex subtrees are con-
structed, each one associated with a frequency num-
ber in the input. The algorithm repeatedly merges the
two subtrees with the smallest associated frequency
values, assigning the sum of these frequencies to the
resulting tree. A priority queue data structure allows
the algorithm to quickly find the subtrees to merge at
each step.

Data for the timing experiments was generated by
choosing integer frequencies uniformly from the range
{0,100000]. Timing results are based on fifty execu-
tions for each input sise.

6.3 Shortest Path

Given a graph with non-negative edge weights and
8 source vertex, we wish to find the shortest paths
from the source vertex to each of the other vertices.
This is another classic problem and has been examined
extensively in the literature. Qur approach is applied
to Dijkstra’s algorithm.

Dijkstra’s algorithm is a greedy algorithm. At each
step, there exists a set of vertices § to which shortest
Paths are known, and a set T of vertices adjacent to
members of this set. The best paths known to mem-

erated by choosing a set of | E| distinct edges uniformly
from all possible such sets, then rejecting graphs that
were not connected. |E| was chosen sufficiently large
that each selection is connected with high probability,
resulting in few rejections. The input sizes were cho-
sen to keep the ration |[E|/|V| constant, for in practice
the running time of the algorithm is affected by this
ratio. Timing results are based on fifty executions at
each input sise. The sise column of Table 3 contains
an ordered pair indicating the number of vertices and
edges.

6.4 Skyline

Given a set of rectangles with with collinear bot-
tom edges, the skyline is the figure resulting from re-
moving all hidden edges. The problem of computing
the skyline of a set of rectangular buildings by elim-
inating hidden lines is discussed in [8]. The method
used is divide and conquer and it constructs a sky-
line in O(nlog(n)) time. In this paper we use a plane
sweep algorithm that can be easily implemented in
terms of operations on priority queues. Plane sweep
algorithms are widely used for computational geom-
etry problems [9], and typically use a priority queue
for event scheduling, and may be amenable to use of
certification trail techniques.

Using a plane sweep algorithm, we compute the
skyline as follows. Initialise a vertical sweep line to
the left of all the rectangles (we may assume that all
rectangle are to the right of the y-axis). As we sweep
the line to the right we maintain a collection of the
heights of the rectangles encountered. For each rect-
angle R, the height of R is added to the collection
when we encounter R’s left edge and removed when
we encounter its right edge. The height of the skyline
at any point 2o, is the maximum height in the collec-
tion when the sweepline is at z = 2. Details are given
below. A structure supporting insert and deletemin is

T ¥iee “Basic Generste T Use | % Saving | Speedup
Algorithm | Trail | Trail

1000 (X1 0.37 o.11 34.00 137
7000 0.5e 059 0.33 aT.6s 358
) 5000 (R4 1.79 058 | 3070 1.08
= [10000 346 4.01 117 | 32.00 3.30
36660 3.50 .78 358 | 1 n 356
30000 1330 1403 | 886 | 33.00 374

Table 4: Skyline

all that is needed to order the events, and a structure
— supporting insert, max, and delete is required to store
the rectangle heights. A priority queue (supporting
_ . insert and can be used to order the sweepline events,
= and a generalised priqrity queue to store the rectangle
heights.
—: Input data was generated by choosing integral rect-
o angle heights uniformly over the range [0,100000].
The z-coordinates of the left edges were chosen uni-
... formly over the range [0,90000] and the width of
" " each rectangle was chosen uniformly over the range
= [1,10000]. Timing results are based on twenty execu-
tions for each input sise.

§

7 Conclusions

The experimental data in this paper shows the util-
ity of the certification trail approach using abstract
data types. This paper supplements (13] which pro-

= vides experimental data illustzating the advantages of
implementation specific certification trails over classi-
_ _cal time redundancy. We have shown that the more
— general approach of checking abstract data types also
provides performance superior to classical time redun-
dancy. This is significant because a wide range of al-
gorithms may be represented as a sequence of oper-
" ations on abstract data types. The certification trail
approach may therefore be used on these programs,
. .Without requiring per problem “ad hoc” techniques.
—Creation of library routines or class libraries for these
data types allows the certification trail technique to be
used transparently, and may allow it’s use with only
—minor modifications of existing code,

—References

_[1] Adel'son-Vel’skii, G. M., and Landis, E. M., “An
algorithm for the organization of information”,
Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

305

o

[2] Avisienis, A., “The N-version approach to fault
tolerant sofiware,” JEEE Trans. on Software En-
gineering, vol. 11, pp. 1491-1501, Dec., 1985.

[3] Bayer, R., and McCreight, E., “Organisation of
large ordered indexes”, Acta Inform., pp 173-189,
1, 1972,

(4] Chen, L., and Avisienis A., “N-version program-
ming: a fault tolerant approach to reliability
of software operation,” Digest of the 1978 Fault
Tolerant Computing Symposium, pp. 3-9, IEEE
Computer Society Press, 1978.

(5] Gabow, H. N., and Turjan, R. E., “A linear-time
algorithm for a special case of disjoint set union,”
J. of Comp. and Sys. Sci., 30(2), pp. 209-221,
1985.

(6] Guibas, L.J., and Sedgewick, R., “A dichromatic
framework for balanced trees”, Proceedings of the
Nineteenth Annual Symposium on Foundations
of Computing, pp. 8-21, IEEE Computer Society
Press, 1978.

(7] Huffman, D., “A method for the construction
of minimum redundancy codes”, Proc. IRE, PP
1098-1101, 40, 1952,

[8] Manber U., Introduction to Algorithms: A Cre-
ative Approach Addison-Wesley, Reading, MA,
1989,

(9] Preparata F. P., and Shamos M. L, Compu-
tational geometry: an introduction, Springer-
Verlag, New York, NY, 1985.

(10] Randell, B., “System structure for software fault
tolerance,” IEEE Trans. on Software Engineer-
ing, vol. 1, pp. 220-232, June, 1975.

(11] Sullivan, G.F., and Masson, G.M., “Using cer-
tification trails to achieve software fault toler-
ance,” Digest of the 1990 Fault Tolerant Com-
puting Symposium, pp. 423-431, IEEE Computer
Society Press, 1990.

(12] Sullivan, G.F., and Masson, G.M., “Certification
trails for data structures,” Digest of the 1991
Fault Tolerant Computing Symposium, pp. 240-
247, IEEE Computer Society Press, 1991,

(13] Sullivan, G.F., Wilson, D.S., Masson, G.M., Itoh,
M., Smith, W.S., Kay, J.S., “Experimental eval-
uation of the certification trail method,” Techni-
cal Report, Computer Science Department, The
Johns Hopkins University

[

"

L

United States Patent (9

Masson et al.

AR A AR

US005243607A
(11} Patent Number: 5,243,607
(4s) Date of Patent: Sep. 7, 1993

[$4) METHOD AND APPARATUS FOR FAULT
TOLERANCE

(7S] Inventors: Gerald M. Masson; Gregory F.
Sullivan, both of Baltimore, Md.

[73] Assignee: The Johns Hopkins University,
Baltimore, Md.

[21] Appl. No.: 543,481
[22] Filed: Jun. 28, 1990

[CS) IR 7Y o K HO4L 1/08
(2] US. Q. oo, 371/69.1; 371/68.3;
371/68.1; 371/19; 395/875

[58] Field of Search 371/69.1, 68.3, 68.1,
371719, 15.1, 16.1, 67.1; 364/200 MS File;

395/575

(56) References Cited
U.S. PATENT DOCUMENTS

4,696,003 971987 Kerr .overivrrenneenene 3717691 X
4,756,005 7/1988 Shedd . 371/69.1 X
5,005,174 4/1991 Bruckertetal ..., 371/68.3

OTHER PUBLICATIONS

H. Geng, “Circuit for the Complete Check of a Data—
Processing System™, IBM TDB, vol. 16, No. 4, Sep.
1974, pp. 1144-1145.

K. Knowlton, “A Combination Hardware-Software

Debugging System.” IEEE Transactions on Comput-
ers, Jan. 1968, pp. 81-86.

Primary Examiner—Robert W. Besusoliel, Jr.
Assistant Examiner—Ly V. Hua
Attorney, Agent, or Firm—Ansel M. Schwartz

{57} ABSTRACT

A method and apparatus for achieving fault tolerance in
a computer system having at least a first central process-
ing unit and 8 second ceatral processing unit. The
method comprises the steps of first executing s first
algorithm in the first central processing unit on input
which produces & first cutput as well as & certification
trail. Next, executing a second algorithm in the second
central processing unit on the input and on at least a
portion of the certification trail which produces a sec-
ond output. The second algorithm has a faster execution
time than the first algorithm for a given input. Then,
comparing the first and second outputs such that an
error result is produced if the first and second outputs
are not the same. The step of executing a first algorithm
and the step of executing a second algorithm preferably
takes place over essentially the same time period.

18 Qlaims, 6 Drawing Sheets

FIRST EXECUTION

OUTPUT OR ERROR

CERTIFICATION
TRAIL

QUTPUT OR
ERROR

SECOND EXECUTION

COMPARATOR

OUTPUT OR ERROR

{

CIl

L bl

e

I TRT

|

i

ll

T

i

o

gmi:

g i

I
i

N
|

U.S. Patent Sep.

7, 1993 Sheet 1 of 6

FIRST EXECUTION N outeuT OR ERROR

CERTIFICATION
’ TRAIL

COMPARATOR

SECOND EXECUTION I QUTPUT OR ERROR

Algorithm MINSPAN(G,wei

FlG. 1

oht)

Input: Connecled graph G s (V,E) where Vs {\. n} with edge weights,

Output: Spanning tree-of
1 CHOOSE roof ¢V

h:sQ; v:arool
WHILE v # empty DO
key(v):s —@

IF weight ([v,wl)<key{

ELSE insert {w,key
END (F

END FOR

I3 (v,k):s deletemin (h)
14 END WHILE

15 FOR ALL v ¢ V- {root
END MINSPAN

N3P NORL LN

G which hos mmm\um weight

FOR ALL u eV, keylu): 2@ END FOR

FOR EACH [v,w)¢ E DO

w) THEN

key (w):z weight ((v,wl);prefer (w}:s (v,w]
IF member (w,h) THEN chongekey (\v.luy(w) h)

(w),h) END 1

},OUTPUT (prefer(u)) END FOR

FIG. 3

5,243,607

Brkor

Il! e
T

m

l "
Hui

ll iy
L IR

| WP 1K ik

l fy—
ALk

(L

U.S. Patent Sep. 7, 1993

FlG.2(a)

200

Sheet 2 of 6

FlG.2(b

)

800 .-

Fi6.2(d)

5,243,607

+..200

Q 495®\

cé>

F1G.2(f)

O)

ci>

200
450 5
495
250
3 350 3
650

i

1l

i

 fill
LYRIN

}

1

| A i

U.S. Patent Sep. 7, 1993

o

~ O OO VU N -

Algorithm HUFFMAN (FREQ)

Input: Sequence of positive integers FREQ-{![I]J[Z]..

Sheet 3 of 6

N~ O U s N

/ .INF

iy Ny il

FIG. 4(b)

Output: Pointertoo Huffman tree for the input frequencies

1 FORi:s1ton DO

2 insert (i, f(i),h)

3 ptr [i]: s ollocote()

4 infolptr (i)): s (i, f[i))

S END FOR

6 FORj:=n+1 10 2n-1 00

7 (item1, key1): s deletemin(h)
8 (item 2, key2): s deletemin (h)
9 ptr(jl:= ollocote)

0 infolptr[j3): =(j,key 1 + key2)
i left Uptr(jl):sptr [item1)

" rightlptr(j)):=pir [item 2)
3 insert (j, key 1 + key 2,h)

14 END FOR

1S OUTPUT (ptrl2n-11)

END HUFFMAN

FIG. 5

5,243,607

.Anl}

U.S. Patent Sep. 7, 1993 Sheet 4 of 6 5,243,607

Algorithm CONVEXHULL(S)

Input: Set of points, S, in Rz 2 :

Oulput: Counterclockwise sequence of points in R which define convex hutl of §

1 Let pl be the point with the lorgest 2 coordinote (ond smaliest y 1o breck ties)

2 For eoch point p (except pl) colculote the slope of the lina through pl and p

3 Sort the points (except p1) from the smallest slope to the lorgest. Call them p2,...pn
4 qt:spl; q2:2p2;Q3:+p3; M3

S FORk=4 ton 0O

6 WHILE the ongle formed by qm-1,qm,pk
7 m:smel

8§ Qqm:spk

9 END FOR :
IOFORis 1 to m DO, OUTPUT (qi) END FOR
END CONVEXHULL

is » 180 degrees DO m :sm -1 END FOR

FIG. 7

g

I 1
ol o

il

LI
[i

L i

b

LI

I

b

1 | I O

i

i

U.S. Patent

03
.
\
L}
-
e \\
SONON
soa ™
-

FlG.8(a)

"2

Sep. 7, 1993

F16.8(b)

Sheet S of 6

a3

5,243,607

q3

q2

ql

F/G.8(c)

CPU

Y

MEANS FIRST
FOR ALGORITHM
FAULT
TOLERENCE
SECOND
ALGORITHM

Y

COMPARE

Y

Y

FIG. 9

EM!IH‘

lwvl\

(1 (e vl {

[

U.S. Patent

Sep. 7, 1993

FIRST CENTRAL
PROCESSING UNIT

INPUT

Sheet 6 of 6 5,243,607

FIRST OUTPUT

FIRST
ALGORITHM

CERTIFICATION
TRAIL

SECOND CENTRAL

PROCESSING UNIT

COMPARE

SECOND QUTPUT

SECOND
ALGORITHM
FIRST COMPUTER N 1]
FIRST INPUT FIRST MEMORY FIRST CENTRAL
PORT PROCESSING
FIRST UNIT
ALGORITHM

COMPARING
~ MECHANISM

SECOND COMPUTER

SECOND CENTRAL
PROCESSING UNIT

SECOND SECOND MEMORY
INPUT PORT
SECOND
ALGORITHM
J

FIG. 11

[

L]

1
ibilisd

[

il

1

I

Il

I

5,243,607

1

METHOD AND APPARATUS FOR FAULT
TOLERANCE

LICENSES

The United States Government has a paid-up non-
exclusive license to practice the claimed invention
herein as per NSF Grant CCR-8910569 and NASA
Grant NSG 442,

FIELD OF THE INVENTION

The present invention relates to fault tolerance. More
specifically, the present invention relates to a first algo-
rithm that provides a certification trail to & second algo-
rithm for fault tolerance purposes.

BACKGROUND OF THE INVENTION

Traditionally, with respect to fault tolerance, the
specification of a problem is given and an algorithm to
solve it is constructed. This algorithm is executed on an
input and the output is stored. Next, the same algorithm
is executed again on the same input and the output is
compared to the earlier output. If the outputs differ then
an error is indicated, otherwise the output is accepted as
correct. This software fault tolerance method requires
additional time, so called time redundancy [Johnson, B.,
Design and analysis of fault tolerant digital systems,
Addison-Wesley, Reading Mass., 1989; Siewiorek, D.,
and Swarz, R., The theory and practice of reliable de-
sign, Digital Press, Bedford, Mass., 1982]); however, it
requires not additional software. It is particularly valu-
able for detecting errors caused by transient fault phe-
nomena. If such faults cause an error during only one of
the executions then either the error will be detected or
the output will be correct.

A variation of the above method uses two separate
algorithms, one for each execution, which have been
written independently based on the problem specifica-
tion. This technique, call N-version programming
[Chen, L., and Avizienis A., “N-version programming:
a fault tolerant approach to reliability of software oper-
ation,” Digest of the 1978 Fault Tolerant Computing
Symposium, pp. 3-9, IEEE Computer Society Press,
1978 Avizienis, A., “The N.version approach to fault
tolerant software,” IEEE Trans. on Software Engineer-
ing, vol. 11, pp. 1491-1501, December, 1985] (in this
case N =2), allows for the detection of errors caused by
some faults in the software in addition 10 those caused
by transient hardware faults and utilizes both time and
software redundancy. Errors caused by software faults
are detected whenever the independently written pro-
grams do not generate coincident errors.

SUMMARY OF THE INVENTION

The present invention pertains to a method for
achieving fault tolerance in & computer system having
at least a first central processing system and a second
central processing system. The method comprises the
steps of first executing a first algorithm in the first cen-
tral processing unit on input which produces a first
output as well as s certification trail. Next, executing a
second algorithm in the second central processing unit
on the input and on at least a portion of the certification
trail which produces a second output. The second algo-
rithm has a faster execution time than the first algorithm
for a given input. Then, comparing the first and second
outputs such that an error result is produced if the first
and second outputs are not the same. The step of execut-

1

Pl

s

40

45

s

2
ing a first algorithm and the step of executing a second
algorithm preferably takes place over essentially the
same time period.

The present invention also pertains to a method for
achieving fault tolerance in a central processing unit.
The method comprises the steps of executing a first
algorithm in the central processing unit on input which
produces the first output as well as a certification trail.
Then, there is the step of executing & second algorithm
in the central processing unit on the input and on at least
a portion of the certification trail which produces a
second output. The second algorithm has a faster execu-
tion time than the first algorithm for a given input.
Then, there is the step of comparing the first and second
outputs such that an error result is produced if the first
and second outputs are not the same.

The present invention also pertains to a computer
system. The computer system comprises a first com-
puter. The first computer has a first memory. The first
computer also has a first central processing unit in com-
munication with the memory. The first computer addi-
tionally has a first input port in communication with the
memory in the first central processing unit. There is 2
first algorithm disposed in the first memory which pro-
duces a first output as well as a certification trail based
on input received by the input port when it is executed
by the first central processor. The computer system is
additionally comprised of a second computer. The sec-
ond computer is comprised of & second memory. The

second computer is also comprised of & second central’

processing unit in communication with the memory and
the first central processing unit. The second computer
additionally is comprised of a second input port in com-
munication with the memory in the second central pro-
cessing unit. There is a second algorithm disposed in the
second memory which produces a second output based
on the input and on at least a portion of the certification
trail when the second algorithm is executed by the sec-
ond central processing unit. The second algorithm has a
faster execution time than the first algorithm for a given
input. The computer system is also comprised of a
mechanism for comparing the first and second outputs
such that an error result is produced if the first and
second outputs are not the same.

Moreover, the present invention also pertains to a
computer. The computer is comprised of a memory.
Additionally, the computer is comprised of s central
processing unit in communication with the memory.
The computer is additionally comprised of a first input
port in communication with the memory and the central
processing unit. There is a first algorithm disposed in
the memory which produces s first output as well as 2

. certification trail based on input received by the input

60

65

port when the input is executed by the first central
processor. There is a second algorithm also disposed in
the memory which produces a second output based on
the input and on at least a portion of the certification
trail when the second algorithm is executed by the cen-
tral processing unit. The second algorithm has a faster
execution time than the first algorithm for a given input.
Moreover, the computer is comprised of a mechanism
for comparing the first and second outputs such that an
erfor result is produced if the first and second outputs
are not the same.

L §

e

5,243,607

3

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, the preferred em-
bodiments of the invention and preferred methods of
practicing the invention are illustrated in which:

FIG. 1 is a block diagram of the present invention.

FIGS. 2A through FIG. 2F shows an examples of a
minimum spanning tree algorithm.

FIG. 3 with the source code for a mince man algo-
rithm.

F1G. 4A and 4B shows an example of a data structure
used in the second execution of a mince man algorithm.

FIG. 5 with the source code for 8 Huffman algo-
rithm.

F1G. 6 shows an example of s Huffman tree.

FIG. 7 with the source code for Graham's scan algo-
rithm.

FIG. 8A through F1G. 8C shows a convex hull exam-
ple.

15

FIG. 9 is a block diagram of an apparatus of the 20

present invention.

FIG. 10 is a block diagram of another embodiment of
the present invention.

FIG. 11 is a block diagram of another embodiment of
the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The central idea of the present invention, essentially &
fault tolerance mechanism, as illustrated in FIG. 1, is to
modify a first algorithm so that it leaves behind a trail of
data which is called a certification trail. This data is
chosen so that it can allow a second algorithm to exe-
cute more quickly and/or have a simpler structure than
the first algorithm. The outputs of the two executions
are compared and are considered correct only if they
agree. Note, however, care must be taken in defining
this method or else its error detection capability might
be reduced by the introduction of data dependent be-
tween the two algorithm executions. For example, sup-
pose the first algorithm execution contains a error
which causes an incorrect output and an incorrect trial
of data to be generated. Further suppose that no error
occurs during the execution of the second algorithm. It
still appears possible that the execution of the second
algorithm might use the incorrect trail 10 generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be “fooled” by the
data left behind by the first execution. The definitions
given below exclude this possibility. They demand that
the second execution either generates & correct answer
or signals the fact that an error has been detected in the
data trail. Finally, it should be noted that in FIG. 1 both
executions can signal an error. These errors would in-
clude run-time errors such as divided-by-zero or non-
terminating computation. In addition the second execu-
tion can signal error due to an incorrect certification
trail. The fault tolerance means can be used in bardware
or software systems and manifested as firmware or soft-
ware in a central processing unit. ’

A formal definition of a certification trail is the fol-
lowing.

Definition 2.1. A problem P is formalized as a relation
(that is, & set of ordered pairs). Let D be the domain
(that is, the set of inputs) of the relation P and let S be
the range (that is, the set of solutions) for the problem.
1t can be said an algorithm A solves a problem P if for

25

30

35

4

45

50

35

4
alld € D when diis input to A then an s € S is output such
that (d.s) ¢ P.

Definition 2.2. Let P : D - S be a problem. Let T be
the set of certification trails. A solution to this problem
using a certification trail consists of two functions Fy
and F; with the following domains and ranges F1:D —
S % Tand F3:D X T — SU error. The functions must
satisfy the following two properties:

(i)foralldtDthereuimuSmdtbereexisulc
T such that Fi(d) = (s.t) and Fx(d,1) = s and (d.5) € P

(2)foralld e D and forall t € T either (Fx(d,t) = 8 and
(d,s) € P) or Fx(d,t) = error.

The definitions above assure that the error detection
capability of the certification trail approach is compara-
ble to that obtained with the simple time redundancy
approach discussed earlier. That is, if transient hard-
ware faults occur during only one of the executions
then either an error will be detected or the output will
be correct. It should be further noted, however, the
examples to be considered will indicate that this new
spproach can also save overall execution time.

The certification trial approach also allows for the
detection of faults in software. As in N-version pro-
gramming, separate teams can write the specification
now must include precise information describing the
generation and use of the certification trial. Because of
the additional data available to the second execution,
the specifications of the two phases can be very differ-
ent; similarly, the two algorithms used to implement the
phases can be very different. This will be illustrated in
the convex hull example to be considered later. Alterna--
tively, the two algorithms can be very similar, differing
only in data structure manipulations. This will be illus-
trated in the minimum spanning tree and Huffman tree
examples to be considered later. When significantly
different algorithms are used it is sometimes possible to
save programming effort by sharing program code.
While this reduces the ability to detect errors in the
software it does not change the ability to detect tran-
sient hardware errors as discussed earlier.

With respect to the above, it has been assumed that
our method is implemented with software; bowever, it
is clearly possible to implement the certification trail
technique by using dedicated hardware. It is also possi-
ble to generalize the basic two-level hierarchy of the
certification trial approach as illustrated in FIG. 1 10
higher levels.

Examples of the Certification Trail Technique

In this section, there is illustrated the use of certifica-
tion trails by means of applications to three well-known
and significant problems in computer science: the mini-
mum spanning tree problem, the Huffman tree problem,
and the convex hull problem. It should be stressed here
that the certification trail approach is not limited to
these problems. Rather, these algorithms have been

" selected only to give illustrations of this technique.

60

63

Minimum Spanning Tree Example

The minimum spanning tree problem has been exam-
ined extensively in the literature and an historical sur-
vey is given in [Graham, R.L., “An efficient algorithm
for determining the convex hull of a planar set”, Infor-
mation Processing Letters, pp. 132-133, 1, 1972]. The
centification trial approach is applied to a variant of the
Prim/Dijkstra algorithm]Prim, R.C., “Shortest con-
nection networks and some generalizations,: Bell Syst.
Tech. J., pp. 1389-1401, November, 1957; Dijkstra, E.

1

EP\M I I 1 ll !H

| r

5,243,607
) 6

W, “A note on two problems in connexion with In our case, there is used two different data structure
graphs.” Numer. Math. 1, pp. 269-1984, Jun. 20-22) as methods to support these operations. One method will
explicated in [Tarjan, R.E., Data Structures and Net- be used in the first execution of the algorithm and an-
work Algorithms, Society for Industrial and applied other, faster and simpler, method will be used in the
Mathematics, Philadelphia, Pa. 1983). The discussion of $§ second execution. The second method relies on s trail of
the application of the certification trail approach to the data which is output by the first execution.
mmd:pmr"ﬁn‘:::&tree problem beings with some pre MINSPAN ALGORITHM

Definition 3.1. A graph G = (V,E) consists of a ver- Before discussing precise implementation details for
tex se1 V and an edge set E. An edge is an unordered 10 these methods the overall algorithm used in both execu-
pair of distinct vertices which is notated as, for example, ions is presented. Pidgin code for this algorithm ap-
[v.w). and itis said v is adjacent tow. A pathin a graph peary below. In addition, FIG. 2 illustrates the execu-
from v to vy is a sequence of vertices vy, v, ..., vksuch tion of the algorithm on & sample graph and the table
that [vi, vy = jJisanedgeforie[l, ...,k — I} Apath pelow records the data structure operations the algo-
isacycleifk > I and vy = vi An acyclic graph is 2 15 fihm must perform when run on the sample graph. The
8raph which contains no cycles. A connected graphisa £ column of the table gives the operations except
graph such that for all pairs of vertices v,w there is 8 v ar and the parameter h dropped to reduce clutter.
pathhfrom Vto w. A tree is an acyclic and connected Ty, yecond column gives the evolving contents of h.
graph. i lumn records the ordered pair deleted b

Definition 3.2. Let G = (V,E) be 2 graph and let wbe 20 11 ,nira 001 aperation. The fourth column records ta

a positive rational valued function defined on E. A . ion trail odi th tions and
subtree of G is a tree, (V'E), with VVC. Vand E'C g ﬁc‘" eoussed happoncing to these operations

E. It is said T spans V' and V' is spanned by T. If V' = . “ " - "
Vihenwesay Tisa spanning tree of G. The weight of m&‘fmm gews:m?hcm bg?lw f
::fnm l;cf'of:ifxei;:nn::;:m spanning tree is & 2 ing an arbitrary vertex from which to grow the tree.
: During each iteration of the algorithm a new edge is
Data Structures and Supported Operations added to the tree being constructed. Thus, the set of
vertices spanned by the tree increases by exactly one

Before discussion of the minimum spanning tree algo- vertex for each iteration. The edge which is added to

rithm, there must be described the properties of the 30 ; . -
principle data structure that are required. Since many the tree is the one with the smallest weight. FIG. 2

. . shows this process in action. FIG. 2{a) shows the input -
different data siructures can be used to implement the P
algorithm, initially there is described abstractly the data 8raph. FIGS. 2(b) through 2(e) show several stages of
that can be stored by the data structure and the opera. the tree growth and FIG. 2(/) shows the final output of
tions that can be used to manipulate this data. The data 35 the minimum spanning tree. The solid edges in FIGS.
consists of set of ordered pairs. The first element in 2(5) through 2(e) represent the current tree and the
these ordered pairs is referred 10 as the item number and :iotted edges represent candidates for addition to the
the second element is called the key value. Ordered ree.
pairs may be added and removed fromylhe set; however, To efficiently find the edge to add to the current tree
at all times, the item numbers of distinct ordered pairs 40 the algorithm uses the data structure operations de-
must be distinct. It is possible, through, for multiple ~ $cribed above. As soon as a vertex, say v, is adjacent to
ordered pairs to have the same key value. In this paper ~ some vertex which is currently spanned it is inserted in
the item numbers are integers between 1 and n, inclu- the set h. The key value for v is the weight of the mini-
sive. Our default convention is that i is an item number, =~ mum edge between v and some vertex spanned by the
k is a key value and h is a set of ordered pairs. A total 45 current tree. The array element prefer (v) is used to
ordering on the pairs of a set can be defined lexico- keep track of this minimum weight edge. As the tree

graphically as follows: (i.k) < (i'k)iffk < k'or (k = grows, information is updated by operations such as
k'and i < i'). The data structure should support asubset insert (i,k,h) and changekey (Lk.h).
of the following operations. TABLE !

member (i,h) returns a boolean value of true if h con- 30
tains an ordered pair with item number i, otherwise
returns false.

trall for MINSPAN

inser: (i,k.h) adds the ordered pair (i,k) 1o the set b. Operation S0 of Ovdered Poiny | Delewe Tl
delete (i,h) deletes the unique ordered pair with item z&%ﬁ; (2.0'3;.(6.5&) m;‘“'
number i from h. 35 geletemin (6.500) Q.200)
changekey (i,k,h) is executed only when there is an imen() $00) (6,500).(3,900) 3
ordered pair with item number i and h. This pair is - changekey(6.450) - (6.450).(3.000) smallest
replaced by (i.k). insers(7.503) opreiylirciataan
deletemin (h) returns the ordered pair which is smallest mgo) g.zso).USOS).ﬂm) smalflest
according 1o the total order defined above and de- 60 changekey(7.495) (3.250),(7.495).(3,800) s
letes this pair. If h is the empty set then the token deletemin (7,49%).03,800) (5.250)
“empty” is returned. changekey(3,330) (3.350).(7.::55) 4700 smallest
predecessor (i,h) returns the item number of the ordered ~ §5r4.200) g::;g;ﬂ:m;'(ag 3.3%0) !
pair which immediately precedes the pair with item changekey(4.650) (7.495).(4,650) 7
aumber i in the total order. If there is no predecessor 65 delesemin (4,650) (1.49%)
then the token “smallest” is returned. deletemin (4.650)
Many different types and combinations of data struc- ~ Sckiemin Pty

tures can be used to support these operations efficiently.

A (R | S

[ww X

l e

5,243,607

7

The deletemin (h) operation is used to select the next
vertex 1o add to the span of the current tree. Note, the
algorithm does not explicitly keep a set of edges repre-
senting the current tree. Implicitly, however, if (v,k) is
returned by deletemin then prefer (v) is added to the
current tree. '

In the first execution of the MINSPAN algorithm,
the MINSPAN code is used and the principle data
structure is implemented with a balanced tree such as an
AVL tree [Adel'son-Vel'skii, G.M., and Landis, EM,,
“An algorithm for the organization of information™,
Soviet Math. Dokl., pp. 1259-1262, 3, 1962}, a red-black
tree [Guibas, LJ., and Sedgewick, R., “A dichromatic
Framework for balanced trees”, Proceedings of the
Nincteenth Annual Symposium on Foundations of
Computing, pp. 8-21, IEEE Computer Society Press,
1978] or a b-tree [Bayer, R., and McCreight, E., “Orga-
nization of large ordered indexes”, Acta Inform., pp
173-189, 1, 1972]. In addition, an array of pointers in-
dexed from 1 to n is used. The balanced search tree
stores the ordered pairs in h and is based on the total
order described earlier. The array of pointers is initially
all nil. For each item i, the ith pointer of the array is
used to point to the location of the ordered pair with
item number i in the balanced search tree. If there is no
such ordered pair in the tree then the ith pointer is nil.
This array allows rapid execution of operations such as
member (i,h) and delete (i,h).

The certification trail is generated during the first
execution as follows: When CHOOSE root ¢ V is exe-
cuted in the first step, the vertex which is chosen is
output. Also, each time insert (ik,h) or changekey
(i.k.h) are exccuted, predecessor (i.h) is executed after-
wards, and the answer returned is output. This is illus-
trated in column labeled “Trail" in the table above.

The second execution of the MINSPAN algorithm
also uses the MINSPAN code; however, the CHOOSE
construct and the data structure operations are imple-
mented differently than in the fist execution. The
CHOOSE is performed by simply reading the first ele-
ment of the certification trail. This guarantees the same
choice of a starting vertex is made in both executions.
FIG. 4 depicts the principal data structure used which is
called an indexed linked list. The array is indexed from
1 10 n and contains pointers to a singly linked list which
represents the current contents of h from smallest to
largest. The ith element of the array points to the node
containing the ordered pair with the item number i if it
is present in h; otherwise, the pointer is nil. The Oth
element of the array points to the node containing (0,
-INF). Initially, the array contains nil pointers except
the Oth clement. In order to implement the data struc-
ture operations, the following is provided.

To perform insert (i,k.h), it is necessary to read the
pext value in the certification trail. This value, say j, is
the item number of the ordered pair which is the prede-
cessor of (i.k) in the current contents of h. A new linked
list node is allocated and the trail information is used to
insert the node into the data structure. Specifically, the
ith array pointer is traversed to a node in the linked list,
say Y. (If j = “smallest” then the Oth array pointer is
traversed.) The new node is inserted in the list just after

. node Y and before the next node in the linked list (if
-~ there is one). The data field in the new node is set to (i,k)
= #"and the ith pointer of the array is set to point t0 the new

- pode. FIG. 4 shows the insertion of (7,505) into the dats

structure given that the certification trail value is 6.

0

5

s

43

55

8
F1G. 3(a) is before the insertion and FIG. Xb) is after
the insertion.

When the insert operation is performed, some checks
must be conducted. First, the ith array pointer must be
nil before the operstion is performed. Section, the
sorted order of the pairs stored in the linked list must be
preserved after the operation. That is, if (i’,k’) is stored
in the node before (i.K) in the linked list and (i”,k") is
stored after (i.k), then (") < (LK) < (", k') must bold
in the total order. If cither of these checks fails then
execution halts and “error™ s output.

To perform delete (Lh) the ith array pointer is tra-
versed and the node found is deleted from the linked
list. Next, the ith array pointer is set to nil. FIG. 4 shows
the deletion of item number 7 if one considers FIG. o)
as depicting the data structure before the operation and
FIG. Xb) depicting it aflerwards. When the delete oper-
ation is performed ooe check is made. If the ith array
pointer is nil before the openation then the execution
halts and “error” is output.

To perform changekey (i.ih) it suffices to perform
delete (i,h) followed by insert (Lk.h). Note, this means
the next item in the certification trail is read. Also, the
checks associated with both these two operations are
performed and the execution halts with “error™ output
if any check fails.

To perform detelemin (h) the Oth array pointer is
traversed To the head of the list and the next node in the
list is accessed. If there is no such node then “empty” is
returned and the operation is complete. Otherwise,
suppose the node is Y and suppose it contains the or-
dered pair (1.k), then the node Y is deleted from the list,
the ith array pointer is set to nil, and (i,k) is returned.

Lastly, to perform member (Lh) the ith array pointer

is examined. If it is nil then false is returned, otherwise,
true is returned. The predecessor (i,h) operation is not
used int he second execution.
. This completes the description of the second execu-
tion. To show that there is described a correct imple-
mentation of the certification trail method requires a
proof. The proof has several parts of varying difficulty.
First, one must show that if the first execution is fault-
free then it outputs a minimum spanning tree. Second,
one must show that if the first and second executions are
fault-free then they both output the same minimum
spanning tree. Both these parts of the proof are not
difficult to show.

The third more subtle part of the proof deals with the
situation in which only the second execution is fault-
free. This means an incorrect certification trail may be
generated in the first execution. In this case, it must be
shown that the second execution outputs either the
correct minimum spanning tree or “error™. The checks
that were described this property by detecting any er-
rors that would prevent the execution from generating
the correct output.

In the first execution each data structure operation

- can be performed in O(log(n)) time where Vl=n.

60

65

There are at most O{m) such operations and O(m) addi-
tiona! time overhead where [E]=m. Thus, the first
execution can be performed in O(mlog(n)). It is noted
that th is algorithm does not schieve the fastest known
asymptotic time complexity which appears in Gabow,
H.N., Galil, Z., Spencer, T., and Tarjan, RE., “Effi-
cient algorithms for finding minimum spanning trees in
undirected and direcied graphs,” Combinatorica 6, pp.
109-122, 2, 1986. However, the algorithm presented
here has a significantly smaller constant of proportion-

\\Atw/

—

 Jiw

LI

‘w "
ik

t

i

!
LY

il

5,243,607

9
ally which makes it competitive for reasonably sized
graphs. In addition. it provides us with a relatively
simple and illustrative example of the use of a certifica-
tion trail.

In the second execution each data structure operation
can be performed in O(1). There are still at most O(m)
such operations and O(m) additional time overhead.
Hence, the second execution can be performed in O(m)
time. In other words, because of the availability of the
certification trail, the second execution is performed in
linear time. There are no known O(m) time algorithms
for the minimum spanning tree problem. Komlos [26]
was able 1o show that O(m) comparisons suffice to find
the minimum spanning tree. However, there is no
known O(m) time algorithm to actually find and per-
form these comparisons. Even the related “verification
problem has no known linear time solution. In the veri-
fication problem the input consists of an edge weighted
graph and a subtree. The output is “yes” if the subtree
is the minimum spanning trec and “no” otherwise. The
best known algorithm for this problem was created by
Tarsjan [Tarjan, R.E., “Applications of path compres-
sion on balanced trees”, J. ACM, pp. 690-715, October,
1979] and has the nonlinear time complexity of O(-
ma(m,n)), where a(m,n) is a functional inverse of Ack-
erman’s function. The fact that the data in a certification
trail enables a minimum spanning tree to be found in
linear time is, we believe, intriguing, significant, and
indicative of the great promise of the certification trail
technique. -

Huffman Tree Example

Huffman trees represent another classic algorithmic
problem, one of the original solutions being attributed
to Huffman [Huffman, D., “A method for the construc-
tion of minimum redundancy codes”, Proc. IRE, pp.
1098-1101, 40, 1952]. This solution has been used exten-
sively to perform data compression through the design
and use of so-called Huffman codes. These codes are
prefix codes which are based on the Huffman tree and
which yield excellent data compression ratios. The tree
structure and the code design are based on the frequen-
ciss of individual characters in the data to be com-
pressed. See Huffman, D., “A method for the construc-
tion of minimum redundancy codes”, Proc. IRE, pp.
1098-1101, 40, 1952, for information about the coding
application.

Definition 3.3. The Huffman tree problem is the fol-
lowing: Given & sequence of frequencies (positive inte-
gers) f[1], 2], fln], construct a tree with n leaves
and with one frequency value assigned to each leaf so
that the weighted path length is minimized. Specifi-
cally, the tree should minimize the following sum: £
LE4Aen(i)li] where LEAF is the set of leaves, len() is
the length of the path from the root of the tree to the
Jeaf 1,]i] is the frequency assigned 10 the leaf |,.

An example of a Huffman tree is given in FIG. 6. The
input frequencies are: f{1) = 35, f(2) = 20, (3) = 44,
fl4) = 77, (8) = 23, f{6) = 38, and R7) = 88. The
frequencies appear inside the leaf nodes as the second
elements of the ordered pairs in the figure.

HUFFMAN ALGORITHM

The algorithm to construct the Huffman tree uses a
data structure which is able to implement the insert and
the deletemin operations which are defined above in the
minimum spanning tree example. This type of data
structure is often called a priority queue. The algorithm

15

25

15

(1]

35

10

also uses the command allocate to construct the tree.
This command allocates 8 new node and returns a
pointer to it. Each node is able to store an item number
and a key value in the field calied info. the item numbers
are in the set (1, . . ., 2n — 1) and the key values are
sums of frequency values. The nodes also contain fields
for left and right pointers since the tree being con-
structed is binary.

The Huffman tree is built from the bottom up and the
overall structure of the algorithm is based on the greedy
“merging” of subtrees. An array of pointers called ptris
used to point to the subtrees as they are constructed.
Initially, n single vertex subtrees with the smallest asso-
ciated frequency values. To perform a merge a new
subtree is created by first allocating 8 new root node
and next setting the left and right pointers to the two
subtrees being merged. The frequency associated with
the new subtree is the sum of the frequencies of the two
subtrees being merged. In FIG. € the frequency associ-
ated with each subtree is shown as the second value in
the root vertex of the subtree. Details of the algorithm
are given below. Note that the priority queue data
structure allows the algorithm to quickly determine
which subtrees should be merged by enabling the two
smallest frequency values to be found efficiently during
cach iteration.

Table 2 below illustrates the dats structure operations
performed when the Huffman tree in FIG. 6 is con-
structed. For conciseness the initial n inset operations
have been omitted. The first column gives the set of
ordered pairs in h. The second column gives the result:
of the two deletemin operations during each iteration.
Note that this column is labeled “Trail" because it is
also output as the certification trail. The third column
records the elements which are inserted by the com-
mand on line 13.

TABLE 2
Data structure operstions and certifications trial
for HUFFMAN
Set of Ordered Pairs Trail Insen

(2.20),(3,23).(1,353(6,38),3,44).(4.77),
.88)

(1.350(6.38).(3.43),(3.44).(4.77).(7.38)
(8.43),(3,44),(9,73),(4,77),(7.88)

(2.20),(5,23) 3.43)
(1.35)(6.38) 4.7

(9.730(4.77)(10.87),07.89) (3.43),(3,44) (10.37)

(10,87),(7,88),(11,150) 0.73)4.77) (11,150
(11.150).(12,175) (10.37).(7.88) (12179
(11,325) (11,1500(12,17%) (13.32%)

First Execution of HUFFMAN

In this execution the code eatitled HUFFMAN is
used and the priority queue data structure is imple-
mented with & heap [Tarjan, R.E., Dau Structures and
Network Algorithms, Society for Industrial and Ap-
plied Mathematics, Philadelphia, Pa. 1983] or a bal-

" anced search tree [Guibes, L.J., and Sedgewick, R., “A

63

dichromatic framework for balanced trees”, Proceed-
ings of the Nineteenth Annual Symposium on Founds-
tions of Computing, pp. 8-21, IEEE computer Society
Press, 1978; Adel'son-Vel-Vel'skii, G. M., and Landis,
E.M., “An algorithm for the organization of informa-
tion”, Soviet Math. Dokl., pp. 1259-1262, 3, 1962;
Bayer, R., and McCreight, E.,, “Organization of large
ordered indexes”, Acta Inform., pp. 173-189, 1, 1972).
Actually, any correct implementation is scceptable;
however, to achieve a reasonable time complexity for
this execution the suggested implementation are desir-

-3,

{ I |

I

!

o

f

5,243,607

11
able. the centification trail is generated as follows:
whenever deletemin (h) is executed the item number
and the key value which are returned are both output.
In the table, the certification trail is listed in the second
column.

Second Execution of HUFFMAN

This execution consists of two parts which may be
logically separated but which are performed together.
In the first logical part, the code called HUFFMAN is
executed again except that the data structure operations
are treated differently. All insert operations are not
performed and all deletemin operations are performed
by simply reading the ordered pairs from the certifica-
tion trail. In the second logical part, the dala structure
operations are “verified”. Note, by “verify” it does not
mean a formal proof of correctness based on the text of
an algorithm. The problem of verification can be formu-
lated as follows: given a sequence of insert (i,k,h) and
deletemin (h) operations (h) operations check to see if
the answers are correct. It should be noted that while in
our example there is only one h, in general there can be
multiple h's to be handled.

The description of the algorithm for the second exe-
cution can be further simplified because only some re-
stricted types of operation sequences are generated by
the HUFFMAN code. First, it can be observed that all
elements are ultimately deleted from h before the algo-
rithm terminates; second, it can be further observed that
when an element is inserted into b, its key value is larger
than the key value of the last element deleted from h.
These two important observations allow us to check a
sequence using the simplified method which is de-
scribed next.

Our simplified method uses an array of integers in-
dexed from 1 to 2n — 1. This array is used to track the
contents of h. If the ordered pair (i,k) is in h, then array
element i is set to a value of k; and if no ordered pair
with item number i is in h, then array element i is set to
a value of — 1. Initially, all array elements are set to —1
and then operation sequence is processed. If insert (Lk)
is executed then array element i is checked to see if it
contains — 1. (The value of —1 is an arbitrary selection
meant 1o serve only as an indicator.) If array element i
does contain — 1, then it is set to k. If deletemin (h) is
executed, then the answer indicated by the certification
trail, say (i,k), is examined. Array element i is checked
1o see if it contains k. In addition, k is compared to the
key value of previous element in the certification trail
sequence to see if it is grester than or equal to that
previous value. If both these checks succeed then array
clement i is set to - 1.

If any of the checks just described above fails, then
the execution halts and “error” is output. Otherwise the
operation sequence is considered “verified”. It can be
rigorously shown that the checks described are suffi-

20

3

40

45

50

§5

cient for determining whether the answers given in the

certification trail are correct; this proof, however, has
been omitted for the sake of brevity. Finally, it is worth
noting that to combine the two logical parts of this
execution, one can perform the data structure checking
in tandem with the code execution of HUFFMAN.
Each time an insert or deletemin is encountered in the
code, the appropriate set of checks are performed.

Time Complexity Comparison of the Two Executions

Again, as in the minimum spanning tree example, the
availability of the certification trail permits the second

65

12

execution for the Huffman tree problem to be dramati-
cally more efficient than the first.

1n the first execution of HUFFMAN, each data struc-
ture operation can be performed in O(log(n)) time
where n is the number of frequencies in the input. There
are O(n) such operations and O(n) additional time over-
head, hence, the execution can be performed in O(n log
(n)). This is the same complexity as the best known
algorithm for constructing Huffman trees.

In the second code execution of HUFFMAN, each
data structure operations is performed in constant time.
Further, verifying the data structure operstions are
correct takes only a constant time per operation. Thus,
it follows that the overall complexity of the second
execution is only O(p).

Convex Hull Example

The convex hull problem is fundamental in computa-
tional geometry. The certification trail solution to the
generation of a convex bull is based on a solution due to
Graham [Graham, R.L., “An efficient algorithm for
determining the convex hull of a planar set”, Informa-
tion Processing Letters, pp. 132-133, 1 1972] which is
called “Graham's Scan.” (For basic definitions and
concepts in computational geometry, see the text of
Preparats and Shamos [Preparata F.P., and Shamos
M.L., Computational geometry; an introduction, Spring-
er-Verlag, New York, N.Y., 1985].) For simplicity in
the discussion which follows, it is assumed the points
are in so-called “general position” (this is, no three
points are colinear). It is not difficult 10 remove this
restriction.

Definition 3.4. A convex region in R is a set of
points, ssy Q, in R2such that for every pair of points in
Q the line segment connecting the points lies entirely
within Q. A polygon is a circularly ordered set of line
segments such that each line segment shares one of its
endpoints with the preceding line segment and shares
the other endpoint with the succeeding line segment in
the ordering. The shared endpoints are called the verti-
ces of the polygon. A polygon may also be specified by
an ordering of its vertices. A convex polygon is a poly-
gon which is the boundary of some convex region. The
convex hull of a set of points, S, in the Euclidean plane
is defined as the smallest convex polygon enclosing all
the points. This polygon is unique and its vertices are 8
subset of the points in S. It is specified by a counter-
clockwise sequence of its vertices.

FIG. 8(c) shows a convex hull for the points indicated
by black dots. Graham's can algorithm given below
constructs the convex hull incrementally in a counter-
clockwise fashion. Sometimes it is necessary for the
algorithm to “backup” the construction by throwing
some vertices out and then continuing. The first step of
the algorithm selects an “extreme™ point and calls it py.
The next two steps sort the remaining points in & way
which is depicted in FIG. 8(a). It is not hard to show
that afier these three steps the points when taken in
order, P1, P2, . - . , P form a simple polygon; although,
in general, this polygon is not convex.

Graham's Scan Algorithm

It is possible to think of Graham’s scan algorithm as
removing points from this simple polygon until it be-
comes convex. the main FOR loop iteration adds verti-
ces to the polygon under construction and the inner

WHILE loop removes vertices from the construction.
A point is removed when the angle test performed at

i

L

1
I

oy
i ble

il

I]H I

I

i

nw
KR

il

5,243,607

13

Step 6 reveals that it is not on the convex hull because
it falls within the triangle defined by three other points.
A “snapshot” of the algorithm given in FIG. 8(5) shows
that qs is removed from the hull. The angle formed by
Q4.qs. P¢ is less than 180 degrees. This means, gs lies
within the triangle formed by qa, p1, pe- (Note, i = p1.)
In general, when the angle test is performed, if the angle
formed by qm —1,qm,pk is less than 180 degrees, then
qQm lies within the trangle formed by qm—1,p1,pk.
Below it will be revealed that this is the primary infor-
mation relied on in our certification trail. When the
main FOR loop is complete, the convex hull has been
constructed.

First Execution of Graham's Scan

In this execution the code CONVEXHULL is used.
The certification trail is generated by adding an output
statement within the WHILE loop. Specifically, if an
angle of less than 180 degrees is found in the WHILE

loop test then the four tuple consisting of 2

qm,qm—1,pl,pk is output to the certification trail.
Table 3 below shows the four tuples of points that
would be output by the algorithm when run on the
example in FI1G. 8. The points in Table 3 are given the
same names as in F1G. (a). The final convex hull points
ql, . . . qm are also output to the certification trail.
Strictly speaking the trail output does not consist of the
actual points in R2. Instead, it consists of indices to the
original input data. This means if the original data con-
sists of 51,52, . . ., s then rather than output the element
in R2corresponding to s the number i is output. It is not
hard to code the program so that this is done.

TABLE 3}

Fust pan of certificatios trail for Graham's scan

Point B0t on convex bell Three surrounding points
Ps Pe.P1.Pe
P P3.P1.Pe
P Pe-P1.Pt

Second Ezxecution for the Convex Hall Problem

Let the certification trail consist of a set of four tu-
ples, (x1.21,b1.c1). (x2,82,02.€2), . . ., (x,8,,bnc,) followed
by the supposed convex hull, q5,q2. - . . ,qm. The code
for CONVEXHULL is not used in this execution. In-
deed, the algorithm performed is dramatically different
than CONVEXHULL.

It consists of five checks on the trail data.

First, the algorithm checks fori e (1, . . . ,r) that x; lies
within the triangle defined by a.b,, and c..

Second, the algorithm checks that for each triple of
counterclockwise consecutive points on the supposed
convex hull the angle formed by the points is less than
or equal to 180 degrees.

Third, it checks that there is a one to one correspon-
dence between the input points and the points in (x;,
....X,)U(qj,...,q..).

Fourth, it checks thatforie (1, ...
among the input points.

Fifth, it checks that there is a unique point among the
points on the supposed convex hull which is a local
extreme point. A point q on the hull is a local extreme
point if its predecessor in the counterclockwise order-

1), ab;, and c;are

k1)

60

ing has a strictly smaller y coordinate and its succes-

sor in the ordering has a smaller or equal y coordi-

nate.

If any of these checks fail then execution halts and
“error” is output. As mentioned above, the trail data

(3]

14
actually consists of indices into the input data. this does
not unduly complicate the checks above: instead it
tmakes them casier. The correciness and adequacy of
these checks must be proven.

Time Complexity of the Two Executions

In the first execution the sorting of the input points
takes O(nlog(n) time where n is the aumber of input
points. One can show that this cost dominates and the
overall complexity is O(nlog(n)).

It is possible to note that, ualike the minimum span-
ning tree example and the Huffman tree example, the
convex hull example utilizes an algorithm in the second
execution that is not s close variant of that used int he
first execution. However, like the previous two exam-
ples, the second execution for the convex hull problem
depends fundamentally on the information in the certifi-
cation trail for efficiency and performance.

Concurrency of Executions

In the three examples discussed sbove, it is possible to
start the second execution before the first execution has
terminated. This is a highly desirable capability when
additional bardware is available to run the second exe-
cution (for example, with multiprocessor machines, or
machines with coprocessors or hardware monitors).

In the case of the minimum spanning tree problem,
the two executions can be run concurrently. It is only
necessary for the second execution to read the certifica-
tion trail as it is genersted—one item number at a time.
Thus, there is a slight time lag in the second execution.
The case of the Huffman tree problem is similar. Both
executions can be run concurrently if the second execu-
tion reads the certification trail as it is generated by the
first execution.

The case of the coavex hull problem is not quite as
favorable, but it is still possible to partially overlap the
two executions. For example, as each 4-tuple of points is
generated by the first execution, it can be checked by
the second execution. But the second execution must
wait for the points on the convex hull to be output at the
end of the first execution before they can be checked.

An additional opportunity for overlapping execution
occurs when the system has a dedicated comparator. In
this case it is sometimes possible for the two executions
to send their output to the comparator as they generate
it. For example, this can be done in the minimum span-
ning tree problem where the edges of the tree can be
sent individually as they are discovered by both execu-
tions.

Comparison of Techniques

The certification trail approach to fault tolerance,
whether implemented in hardware or software or some
combination thereof, bas resemblances with other fault
tolerant techniques that have been previously proposed
and examined, but in each case there are significant and
fundamental distinctions. These distinctions are primar-
ily related to the generation and character of the certif;-
cation trail and the maaner in which the secondary
algorithm or system uses the certification trail to indi-
cate whether the execution of the primary system or
algorithm was in error and/or to produce an output to
be compared with that of the primary system.

To being, the certification trail approach might be
viewed as & form of N-version programming [Chen, L.,
and Avizienis A., “N-version programming: & fault

U

5,243,607

18

tolerant approach 1o reliability of software operation,™
Digest of the 1978 Fault Tolerant Computing Sympo-
sium, pp. 3-9, IEEE computer Society Press, 1978;
Avizienis, A., and Kelly J., “Fault tolerance by design
diversity: concepts and experiments,” Computer, vol.
17, pp. 67-80. August, 1984]. This approach specifies
that N different implementations of an algorithm be
independently executed with subsequent comparison of
the resulting N outputs. There is no relationship among
the executions of the different versions of the algo-
rithms other than they all use the same input; each algo-
rithm is executed independently without any informa-
tion about the execution of the other algorithms. In
marked contrast, the certification trail approach allows
the primary system (o generste & trail of information
while executing its algorithm that is critical 10 the sec-
ondary system’s execution of its algorithm. In effect,
N-version programming can be thought of relative to
the certification trail approach as the employment of &
null trail.

A software/hardware fault tolerance technique
known as the recovery block approach [Randell, Ba.,
“System structure for software fault tolerance,” IEEE
Trans. on Software Engineering vol. 1, pp. 202-232,
June, 1975; Anderson, T., and Lee, P,, Fault tolerance:
principles and practices, Prentice-Hall, Eaglewood
Cliffs, N.J., 1981; Lee, Y. H. and Shin, K. G., “Design
and evaluation of a fault-tolerant multiprocessor using
hardware recovery blocks,” IEEE Trans. Comput., vol
C-33, pp. 113-124, February 1984.] uses acceptance
tests and alternative procedures to produce what is to
be regarded as a corTect output from & program. When
using recovery blocks, a program is viewed as being
structured into blocks of operations which afier execu-
tion yield outputs which can be tested in some informal
sense for correctness. The rigor, completeness, and
nature of the scceptance test is left to the program de-
signer, and many of the scceptance tests that have been
proposed for use tend to be somewhat straightforward
{Anderson, T., and Lee, P, Fault tolerance: principles
and practices, Prentice-Hall, Englewood Cliffs, N.J.,
1981]. Indeed, formal methodologies for the definition
and generation of acceptance tests have thus far not
been established. Regardless, the certification trail no-
tion of a secondary system that receives the same input
as the primary system and executes an algorithm that
takes advantage of this trail to efficiently produce the
correct output and/or to indicate that the execution of
the first algorithm was correct does not fall into the
category of an acceptance test.

A watchdog processor is s small and simple (relative
10 the primary system being monitored) hardware mon-
jtor that detects errors examining information relative
to the behavior of the primary system [Mahmood, A.,
and McCluskey, E., “Concurrent error detection using
watchdog processors,” IEEE Trans. on Computers,

20

28

30

38

40

43

50

55

vol. 37, pp. 160-174, February, 1988; Mahmood, A., -

and McCluskey, E., “Concurrent error detection using
watchdog processors—a survey,” IEEE Trans. on
Computers, vol. 37, pp. 160174, February, 1988; Nam-
joo, M., and McCluskey, E., “Watchdog processors and
capability checking,” Digest of the 1982 Fault Tolerant
Computing Symposium, pp. 245-248, TEEE Computer
Society Press, 1982.]. Error detection using & watchdog
processor is & two-phase process: in the set-up phase,
information about system behavior is provided a priori
to the watchdog processor about the system to be moni-
tored; in the monitoring phase, the watchdog processor

60

63

16

collects or is sent information about the operation of the
system 10 be compared with that which was provided
during the set-up phase. On the basis of this comparison,
a decision is made by the watchdog processor as 10
whether or not an error has occurred. The information
about system behavior by means of which a watchdog
processor must monitor for errors includes memory
access behavior [Namjoo, M., and McCluskey, E.,
“Watchdog processors and capability checking,” Di-
gest of the 1982 Fault Tolerant Computing Symposium,
pp. 245-248, TEEE Computer Society Press, 1982],
control and program flow [Eifert, J. B. and Shen, J. P,
“Processor monitoring using asynchronous signatured
instruction streams,” Dig. 14th Int. Conf. Fault-Toler-
ant Comput, pp. 394-399, 1984, June 20-22; Iyengar,
V.S. and Kinney, L. L., “Concurrent fault detection in
microprogrammed control units,” IEEE Trans. Com-
put., vol. C-34, pp. 810-821, September 1985; Kane, J.
R and Yau, S. S., “Concurrent software fault detection,
» IEEE Trans. Software Eng., vol. SE-1, pp. 87-9,
March 1975; Lu, D, “Watchdog processor and struc-
tural integrity checking, " IEEE Trans. Comput, vol.
C-31, pp. 681685, July 1982; Namjoo, M., “Techniques
for concurrent testing of VLSI processor operation,”
Dig. 1982 Int. Test Conf., pp. 461468, November 1982;
Namjoo, M., “CERBERUS-16: An architecture for a
general purpose watchdog processor,” Dig. Papers 13th
Annu. Int. Sump. Fault Tolerant Comput., pp- 216-219,
June, 1983; Shen, J. P. and Schuette, M.A., “On-line
self-monitoring using signatured instruction streams,”
Proc. 1983 Int. Test Conf., pp. 275-282, October, 1983,
Sridhar, T. and Thatte, S. M., “Concurrent checking of
program flow in VLSI processors,” Dig. 1982 Int. Test
Conf., pp. 191-199, November, 1982; 46,47), of reason-
ableness of results [Mahmood, A., Lu, D. J. and
McCluskey, E. J., “Concurrent fault detection using a
watchdog processor and assertions,” Proc. 1983 Int.
Test Conl., pp. 622-628, October, 1983; Mahmood, A.
Ersoz, a. and McCluskey, EJ., “concurrent system
level error detection using a watchdog processor,”
Proc. 1985 Int. Test conf., pp. 145-152, November,
1985]. Using physical fault injection techniques, distri-
butions of errors that could be detected using such types
of information have been determined for some specific
systems [Schmid, M., Trapp, R., Davidoff, A., and Mas-
son, G., “Upset exposure by means of abstraction verifi-
cation,” Dig. of the 1982 Fault Tolerant Computing
Symposium, pp. 237-244, June, 1982; Gunneflo, U.,
Karlsson, J., and Torin, J., “Evaluation of error detec-
tion schemes for using fault injection by heavy-ion radi-
ation,” Dig. of the 1989 Fault Tolerant Computing
Symposium, pp. 340-347, June, 1989}, and the perfor-
mance of models of error monitoring techniques that
could be realized in the form of watchdog processors
have been analyzed [Blough, D., and Masson, G., “Per-
formance analysis of a generalized concurrent error
detection procedure,” IEEE Trans. on Computers vol.
39, January, 1990.). However, in contrast to the centifi-
cation trail technique, a watchdog processor uses oaly 8
priori defined behavior checks, none of which is suffi-
cien(wgethetwiththeinputwtheprimrysymto
efficiently reproduce the output for direct comparison
with that of the primary system.

Related to the watchdog processor approach is that
of using executable assertions [Andrews, D., “Software
fault tolerance through executable assertions,” Rec.
12th Asilomar Conf. Circuits, Syst, Comput. pp.
641-645, 1978, November 6-8; Andrews, D., “Using

1

!

1iar

i

5,243,607

17

executable assertions for testing and fault tolerance,”
Dig. 9%th Annu. Int. Sump. Fault-Tolerant Comput., pp.
102-105, 1979, June 20-22: Mahwood. A., Lu, D.J. and
McCluskey E. J., “Concurrent fault detection using a
watchdog processor and assertions,™ Proc. 1983 Int.
Test Conf., pp. 622-628, October 1981]. An assertion
can be defined as an invariant relationship among vari-
ables of a process. In a program, for examples, asser-
tions can be written as logical statements and can be
inserted into the code to signify that which has been
predetermined to be invariably true at that point in the
execution of the program. Assertions are based on a
priori determined properties of the primary system or
algorithm. This, however, again serves to distinguish
executable assertion technique from the use of certifica-
tion trails in that a certification trail is a key to the
solution of a problem or the execution of an algorithm
that can be utilized to efficiently and correctly produce
the solution.

Algorithm-based fault tolerance {Huang, K.-H., and
Abraham, J., “Algorithm-based fauh tolerance for ma-
trix operations,” IEEE Trans. on Computers, pp.
518-529, vol. C-33, June, 1984; Nair, V., and Abraham,
J., “General linear codes for fault-tolerant matrix opers-
tions on processor arrays,” Dig. of the 1988 Fault Tol-
erant Computing Symposium, pp. 180-185, June, 1988;
“Fault tolerant FTT networks,” Dig. of the 19835 Fault
Tolerant Computing Symposium, June, 1985] uses error
detecting and correcting codes for performing reliable
computations with specific algorithms. This technique
encodes data at & high level and algorithms are specifi-
cally designed or modified to operate on encoded data
and produce encoded output data. Algorithm-based
fault tolerance is distinguished from other fault toler-
ance techniques by three characteristics: the encoding
of the data used by the algorithm; the modification of
the algorithm to operate on the encoded data; and the
distribution of the computation steps in the algorithm
among computational units. It is assumed that at most
one computational unit is faulty during a specified time
period. The error detection capabilities of the al-
gorithm-based fault tolerance approach are directly
related to that of the error correction encoding utilized.
The certification trail approach does not require that
the data to be executed be modified nor that the funda-
mental operations of the algorithm be changed to ac-
count for these modifications. Instead, only a trail indic-
ative of aspects of the algorithm’s operations must be
generated by the algorithm. As seen from the above
examples, the production of this trail does not burden
the algorithn with a significant overhead. Moreover,
;n,:d combination of computational errors can be han-

Recently Blum and Kannan (Blum, M., and Kannan,
S., “Designing programs that check their work,” Pro-
ceedings of the 1989 ACM Symposium on Theory of
Computing, pp. 86-97, ACM Press, 1989] have defined
what they call a program checker. A program checker
is an algorithm which checks the output of an other
algorithm for correctness and thus it is similar to an
acceptance test in a recovery block. An example of a
program checker is the algorithm developed by Tarjan
[Tarjan, R. E., “Applications of path compression on
balanced trees,” J. ACM, pp. 690-715, October, 1979]
which takes as input a graph and a supposed minimum
spanning tree and indicates whether or not the tree
sctually is a minimum spanning tree. The Blum and
Kannan checker is actually more general than this be-

20

30

s

40

45

50

35

18

cause it is allowed 10 be probabilistic in a carefully
specified way. There are two main differences between
this approach and the certification trail approach. First,
a program checker may call the algorithm it is checking
a polynomial number of times. In the certification trail
approsch the algorithm being checked is run once.
Second, the checker is designed to work for & problem
and not a specific algorithm. That is, the checker design
is based on the input/output specification of a problem.
The certification trail approach is explicitly algorithm
being checked is run once. Second, the checker is de-
signed to work for & problem and not a specific algo-
rithm. That is, the checker design is based on the input-
/output specification of a problem. The certification
trail approsch is explicitly algorithm oriented. In other
words, a specific algorithm for a problem is modified to
out put a certifications trail. This trail sometimes allows
the second execution to be faster than any known pro-
gram checkers for the problem. This is the case for the

Other hardware and software fault tolerance and
error monitoring techniques have been proposed and
studied that might be thought of as bearing some resem-
blance to the certification trail approach. Extensive
summaries and descriptions of these techniques can be
found in the literature [Siewiorek, D., and Swarz, R,
The theory and practice of reliable design, Digital
Press, Bedford, Mass., 1982; Avizienis, A., “Fault toler-
ance by means of external monitoring of computer sys-
tems,” Proceedings of the 1981 National Computer
Conference, pp. 27-40, AFIPS Press, 1980; Johnson, B.,
Design and analysis of fault tolerant digital systems,
Addison-Wesley, Reading, Mass., 1989; Mahmood, A,
and McCluskey, E., “Concurrent error detection using
watchdog processors—s survey,” IEEE Trans on
Computers, vol. 37, pp. 160-174, February, 1988). Ex-
amination of these techniques reveals, however, that in
each case there are fundamental distinctions from the
certification trail approach. In summary, the certifica-
tion trail approach stands along in its employment of
secondary algorithms/systems for the computation of
an output for comparison that because of the availability
of the trail not only proceeds in a more efficient manner
than that of the primary but also can indicate whether
the execution of the primary algorithm was correct.

Although the invention has been described in detail in
the foregoing embodiments for the purpose of illustra-
tion, it is to be understood that such detail is solely for
that purpose and that variations can be made therein by
those skilled in the art without departing from the spirit
and scope of the invention except as it may be described
by the following claims.

What is claimed is:

1. A method for schieving fault tolerance in a com-
puter system having at least a first central processing
unit and a second central processing unit comprising the

- steps of: .

63

executing a first algorithm in the first central process-
ing unit on input so that a first output and a certifi-
cation trail are produced;

executing a second algorithm in the second central
processing unit on the input and on the certification
trail so that a second output is produced, said sec-
ond algorithm having a faster execution time than
the first algorithm for a given input; and

comparing the first and second outputs such that an
error result is produced if the first and second out-
puts are not the same.

CIT

Al
bba

|

5,243,607

19

2. A method as described in claim 1 wherein the step
of exécuting the second algorithm includes the step of
determining whether the centification trail is in error.

3. A method as described in claim 2 including before
the step of executing the first algorithm, there is the step
of duplicating the input such that the input that is pro-
vided 10 the step of executing the first algorithm is also
the input that is provided to the step of executing the
second algorithm.

4. A method as described in claim 3 wherein the step
of executing the first algorithm includes the step of
determining whether the first output is in error.

8. A method as described in claim 4 wherein the step
of executing the first algorithm includes the step of
determining whether the second output is in error.

6. A method as described in claim 5 wherein the
second algorithm generates the second output correctly
when the second algorithm is executed by the second
processing unit even if the certification trial produced
by the first algorithm when the first algorithm is exe-
cuted by the first processing unit is incorrect.

7. A 'method as described in claim 1 wherein the
second algorithm is derived from the first algorithm.

8. A computer system comprising:

a first computer comprising:

a first memory,

a first central processing unit in communication with
the memory,

a first input port in communication with the memory
and the first central processing unit,

a first algorithm disposed in the first memory, said
first algorithm produces a first output and produces
a certification trail based on input received by the
input port when the first algorithm is executed by
the first central processor;

a second computer comprising a second memory,

a second central processing uait in communication
with the second memory and the first central pro-
cessing unit;

a second input port in communication with the sec-
ond memory and the second central processing
unit;

a second algorithm disposed in the second memory,
said second algorithm produces a second output
based on the input and the centification trail when
the second algorithm is executed by the second
central processing unit, said second algorithm hav-
ing a faster execution time than the first algorithm
for a given input; and

a mechanism for comparing the first and second out-
puts such that an error result is produced if the first
and second outputs are not the same.

9. A computer as described in claim 8 wherein the

10

15

20

25

k¢

35

&

45

53

second algorithm generates the second output correctly -

when the second algorithm is executed by the second
processing unit even if the certification trail produced

20
by the first algorithm when the first algorithm is exe-
cuted by the first processing unit is incorrect.

10. A computer system as described in claim 9
wherein the mechanism for comparing is 4 comparator.

11. An apparatus as described in claim 10 wherein the
second algorithm is derived from the first algorithm.

12. A method for schieving fault tolerance in a cen-
tral processing unit comprising the steps of:]

executing a first algorithm in the central processing
unit on input so that a first output and a certifica-
tion trail are produced;

executing & second algorithm in the central process-
ing unit on the input and oa the certification trail so
that a second output is produced, said second algo-
rithm having a faster execution time than the first
algorithm for a given input; and

comparing the first and second outputs such that an
error result is produced if the first and second out-
puts are not the same.

13. A method as described in claim 12 wherein the
second algorithm generates the second output correctly
when the second algorithm is executed by the process-
ing unit even if the certification trail produced by the
first algorithm when it is executed by the processing
unit is incorrect.

14. A method as described in claim 13 wherein the
second algorithm is derived from the first algorithm.

15. A computer comprising:

a memory,)

a central processing unit in communication with the
memory,

a first input port in communication with the memory
and the central processing unit,)

a first algorithm disposed in the memory, said first
algorithm produces a first output and a certifica-
tion trail based on input received by the input port
when the input is executed by the central process-
ing unit;

a second algorithm disposed in the memory, said
second algorithm produces a second output based
on the input and on at least a portion of the certifi-
cation trail when the second algorithm is executed
by the central processing unit, said second algo-
rithm having a faster execution time than the first
algorithm for s given input; and

a mechanism for comparing the first and second out-
puts such that an error result is produced if the first
and second outputs are not the same.

16. A computer as described in claim 13 wherein the
second algorithm generates the second output correctly
when the second algorithm is executed by the process-
ing unit even if the certification trail produced by the
first algorithm when the first algorithm is executed by
the processing unit is incorrect.

17. A computer as described in claim 16 wherein the
mechanism for comparing is 8 comparator.

18. An apparatus as described in claim 13 wherein the

second algorithm is derived from the first algorithm.
¢ & & % ¢

Imu

r

e

]‘ﬂ' 1“ il

o= At mrrtt

T

mlm LY
N

fionmmatn Ma-"nm 17““‘1

oo i
RN

nl' :‘ HEHE

PRI e

r

' I

The Twenteth International Symposium on Fault-Tolerant Computing (1990)

Using Certification Trails to Achieve Software Fault Tolerance

Gregoty F. Sullivan®
Gerald M. Masson?

Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

Abstract

We introduce a conceptually novel and powerful tech-
nique to achieve fault tolerance in hardware and soft-
wate systems. When used for software fault tolerance,
this new technique uses time and software redundancy
and can be outlined as follows. In the initial phase,
a program is run to solve a problem and store the re-
sult. In addition, this program leaves behind a trail of
data which we call a certification trail. In the second
phase, another program is run which solves the origi-
nal problem again. This program, howevez, has access
to the certification trail left by the first program. Be-
cause of the availability of the certification trail, the
second phase can be performed by a less complex pro-
gram and can execute more quickly. In the final phase,
the two results are compared and if they agree the re-
sults are accepted as correct; otherwise an error is indi-
cated. An essential aspect of this approach is that the
second program must always generate either an error
indication or a correct output even when the certifica-
tion trail it receives from the first program is incorrect.
We formalize the certification trail approach to fault
tolerance and illustrate it by applying it to the funda-
mental preblem of finding & minimum spanning tree.
We discuss cases in which the second phase can be
run concurrently with the first and act as a monitor.
We compare the certification trail approach to other
approaches to fault tolerance. Because of space lim-
itations we have ommited examples of our technique
applied to the Huffman tree, and convex hull problems.
These can be found in the full version of this paper.

1 Introduction

In this paper we introduce a novel and powerful tech-
Rique for achieving fault tolerance in systems. Al-
though applicable to both hardware and software, we
testrict our discussion of this technique in the follow-
ing to software fault tolerance. To explain our new

'Research partially supported by NSF Grants CCR-8910569
and CCR-2908092.

?Research parially supported by NASA Grant NSG 1442,

CH 2877-9/90/0000/0423/301.00 ~ 1990 IEEE

technique for software fault tolerance, we will first dis-
cuss a simpler fault tolerant software method. In this
method the specification of a problemn is given and an
algotithm to solve it is constructed. This algorithm is
executed on an input and the output is stored. Next,
the same algorithm is executed again on the same in-
put and the output is compared to the earlier output.
If the outputs differ then an error is indicated, oth-
erwise the output is accepted as correct. This soft-
ware fault tolerance method requires additional time,
so called time redundancy [14, 22]; however, it requires
no additional software. It is particularly valuable for
detecting errors caused by transient fault phenomena.
If such faults cause an error during only one of the ex-
ecutions then either the error will be detected or the
output will be correct.

A variation of the above method uses two separate
algorithms, one for each execution, which have been
written independently based on the problem specifica-
tion. This technique, called N-version programming(8,
4] (in this case N=2), allows for the detection of errors
caused by some faults in the software in addition to
those caused by transient hardware faults and utilizes
both time and software redundancy. Errors caused
by software faults are detected whenever the indepen-
dently written programs do not generate coincident
errots.

 The technique we will describe is designed to achieve
similar types of error detection capabilities but expend
fewer resources. The central idea, as illustrated in Fig-
ure 1, is to modify the first algorithm so that it leaves
behind a trail of dats which we call a certification trail.
This data is chosen so that it can allow the the sec-
ond algorithm to execute more quickly and/or have a
simpler structure than the first algorithm. As above,
the outpnts of the two exeentions are compared and
are considered correct only if they aygree. Nole, how-
ever, we must be careful in defining this method or
else its error detection capability might be reduced
by the introduction of data dependency between the
two algorithm executions. For example, suppose the
first algorithm execution contains a error which causes
an incorrect output and an incorrect trail of data to

PRECEDING PAGE BLANK NOT FILMED

LI

|

1

i

B IR

n

i

I

Fi:D—=SxTand F3: D x T — SU {error}). The
gt First Execution functions must satisly the following two properties: ;.,
e v}??.'?."“" (1) for all d € D there exists 4 € S and “» X
\ Second Execus there exists t € T such that
o cond Executon Fi(d) = (s,1) and F3(d,t) = sand (d,s) ¢ P -3

(2)foralldeDandforallte T .
either (Fi(d,t) = s and (d,s) € P) or 52
F3(d,t) = error. :

ali g ar L

Figure 1: Certification trail method.

The definitions above assure that the error delec.
tion capabilily of the certification trail approach is
comparable to that obtained with the simple tine re-
dundancy approach discussed earliez. That is, if tran-
sient hardware faults occur during only one of the ex-
ecutions then either an error will be detected or tle
output will be correct. It should be further noted,
howevet, the examples to be considered will indicate

5%y b, CAPereg

be generated. Further suppose that no error occurs
during the execution of the second algorithm. It still
appeass possible that the execution of the second al-
gorithm might use the incotrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be “fooled™ by the

data left behind by the first execution. The definitions that this new approach can also save overall execution :
we give below :xclude this possibility. They demand time. ¢
that the second execution either generates a correct The certification trail approach also allows for the H
answer or signals the fact that an error has been de- detection of faults in software. As in 2-version pro- -;
tected in the data trail. Finally, it should be noted that gramming, separate teams can write the algorithins for E
in Figure 1 both executions can signal an error. These the first and second executions. Note that the speci- _
errors would include run-time errors such as divide-by- fication now must include precise information describ- K
zero ot non-terminating computation. In addition the ing the generation and use of the certification trail. H
second execution can signal error due to an incorrect Because of the additional data available to the sec- 'f
cerlification trail. ond execution, Lhe specifications of the two phases ‘

can be very different; similarly, the two algorithms
used to implement the phases can be very different.
2 Formal Definition of a Certi- This is illustrated by the convex hull example in the
fication Trail full paper. Alternatively, the two algorithms can be
very similar, differing only in data structure manipu-
lations. This is illustrated by the minimum spanning
tree example considered later. When significantly dif-
ferent algorithms are used, the probability that both
algorithms will contain or be effected by faults which
generate matching errors should be reduced. When
very similar algorithms are used it is sometimes pos-
sible to save programming effort by sharing program
code. While this reduces the ability to detect errors
in the software it does not change the ability to detect
transient hardware errors as discussed earlier.

ey

E T TACR LRI

In this section we will give a formal definition of a
certification trail and discuss some aspects of its real-
izations and uses,

PRRR AP RY

Definition 2.1 A problem P is formalized as a rela-
tion (that is, a set of ordered pairs). Let D be the
domain (that is, the set of inputs) of the relation P
and let S be the range (that is, the set of solutions)
for the problem. We say an algorithm A solves a piob-

lem P iff for all d € D when d is input lo A then an 7
s € S is output such that (d,s) € P. Throughout this section we have assumed that our

nmiethod is implemented with software; however, it is
Definition 2.2 Let P : D — S be a problem. Let clearly possible toimplement the certification trail tech-

IR B P TPV

T be the set of certification trails. A solution to this nique by using dedicated hardware. It is also possible
problem using a certification trail consists of two func- to generalize the basic two-level hierarchy of the cer-
tions F; and F; with the following domains and ranges tification trail approach as illustrated in Figure 1 to

higher levels. Finally, we note that a wide variety of

424

T

"W“ i “‘"\'Mrv‘ﬂ\"‘w" ‘

oo
|

ROIR IR

I

"The weight of this tree is 3

approaches to software and hardware fault tolerance
have been proposed which bear resemblances to the
certification trail approach; we contrast our method
to the most closely related ideas. A more comprehen-
sive comparison appears in the full paper.

3 Minimum Spanning Tree Ex-
ample

In this section we illustrate the use of the certification
trail method by applying it to the minimum spanning
tree problem. Because of space limitations we have
ommited other applications, e.g., to the Huffman tree
and the convex hull problems. It should be stressed
here that we believe the technique has wide applica-
bility and these problems were chosen simply for illus-
tration.

The minimum spanning tree problem has been ex-
amined extensively in the literature and an historical
survey is given in [11]. Our certification trail approach
is applied to a variant of the Prim/Dijkstra algorithm
[19, 9] as explicated in [24]. We will begin our dis-
cussion of the application of the certification trail ap-
proach to the minimum spanning tree problem with
somie preliminary definitions.

Definition 3.1 A graph G = (V, E) consists of a ver-
tez set V and an edge set E. An edge is an un-
ordered pair of distinct vertices which we notate as,
for example, [v, v}, and we say v is adjacent to w. A
path in a graph from v, to vy is a sequence of ver-
tices vy, v3,..., s such that [v;, v;41] is an edge for
ie {1,....,k—1}. A pathisa cycleif k > 1 and
vy = vy. An acyclic graph is a graph which contains
no cycles. A connected graph is a graph such that for
all pairs of vertices v,w there is a path from v to w. A
tree is an acyclic and connected graph.

Definition 3.2 Let G = (V, E) be a graph and let w
be a positive rational valued function defined on E.
A subtree of G is a tree, T(V', E'), with V' C V and
E' € E. We say T spans V' and V' is spanned by
T. f V' = V then we say T is a spanning tree of G.
Yecp w(e). A minimum
Spanning tree is a spanning tree of minimum weight.

425

3.0.1 Data structures and supported opera-
tions

Before we discuss the miniinum spanning tree algo-
rithm, we must describe the properties of the principle
data structure that are required. Since many different
data structures can be used to implement the algo-
rithm, we initislly describe abstractly the data that
can be stored by the data structure and the operations
that can be used to manipulate this data. The data
consists of a set of ordered pairs. The first element in
these ordeted pairs is referred to as the item number
and the second element is called the key value. Or-
dered pairs may be added and removed from the set;
however, at all times, the item numbers of distinct or-
dered pairs must be distinct. It is possible, though,
for multiple ordered pairs to have the same key value.
In this paper the item numbers are integers between 1
and n, inclusive. Our default convention is that i is an
item number, k is a key value and k is a set of ordered
pairs. A total ordering on the pairs of a set can be
defined lexicographically as follows: (i, k) < (¥, k') ift
k < k' or (k = k' and i <). Our data structure
should support a subset of the following operations.

member(i, k) returns a boolean value of true if h con-
tains an ordered pair with itemn number i, other-
wise returns false,

insert(i, k, h) adds the ordered pair (i, k) to the set A.

delete(i, h) deletes the unique ordered pair with item
number i from A,

changekey(i, k, h) is executed only when there is an
ordered pair with item number i in A. This pair
is replaced by (i, k).

deletemin(h) returns the ordeted pair which is small-
est according to the total order defined above
and deletes this pair. If h is the empty set then
the token “empty” is returned.

predecessor(i, h) returns the item number of the or-
dered pair which immediately precedes the pair
with item number 7 in the tolal order. If there
is no predecessor then the token “smallest™ is
returned.

Many different types and combinations of data struc-
tures can be used to support these operations effi-
ciently. In our case, we will actually use two different
data structure methods to support these operations.

One method will be used in the first execution of the
algorithm and another, faster and simpler, method will
be used in the second execution. The second method
relies on a trail of data which is output by the first
execulion.

3.0.2 MINSPAN alg rithm

Before discussing precise implementation details for
these methods we present the overall algorithm used
in both executions. Pidgin code for this algorithin ap-
pears below. In addition, Figure 2 illustrates the exe-
cution of the algorithin on a sample graph and the ta-
ble below records the data structure operations the al-
gorithm must perform when run on the sample graph.
The first column of the table gives tl:e operations ex-
cept member and with the parameter h dropped to
reduce clutter. The second column gives the evolving
contents of h. The third column records the ordered
pair delected by the delctemin operation. The fourth
column records the certification trail corresponding to
these operations and is further discussed below.

The algorithm uses a “greedy” method to “grow™
a mininum spanning tree. The algorithm starts by
choosing an arbitrary vertex from which to grow the
tree. During each iteration of the algorithm a new
edge is added to the tree being constructed. Thus, the
set of vertices spanned by the tree increases by exactly
one vertex for each iteration. The edge which is added
to the tree is the one with the smallest weight. Fig-
ure 2 shows this process in action. Figure 2(a) shows
the input graph, Figures 2(b) through 2(e) show sev-
eral stages of the tree growth and Figure 2(f) shows
the final output of the minimum spanning tree. The
solid edges in Figures 2(b) through 2(e) represent the
current tree and the dotted edges represent candidates
for addition to the tree.

To efficiently find the edge to add to the current
tree the algorithm uses the data structure operations
described above. As soon as & vertex , say v, is ad-
jacent to some vertex which is currently spanned it is

inserted in the set h. The key value for v is the weight .

of the minimumn weight edge between v and some ver-
tex spanned by ihe current tree. The array element
prefer(v) is used to keep track of this minimum weight
edge. As the tree grows, information is updated by op-
erations such as insert(i, k, h) and changekey(i, k, h).
The delctemin(h) operation is used to select the next
vertex to add to the span of the current trec. Note,
the algorithm does not explicitly keep a set of edges

26

Figure 2: Example for minimum spanning tree algo-
rithm.

representing the current tree. Implicitly, however, if
(v, k) iz returned by deletemin then prefer(v) is added
to the current tree.

3.0.3 TFirst execution of MINSPAN

In the first execution of the algorithm, the MINSPAN
code is used and the principle data structure is imple-
nmented with a balanced search tree such as an AVL
tree [1], a red-black tree [12], or 2 b-tree [5]. In addi-
tion, an array of pointers indexed from 1 to n ic used.
The balanced search tree stores the ordered pairs in h
and is based on the total order described eatlier. The
array of pointers is initially all nil. For each item i,
the ith pointer of the array is used to point to the lo-

ONANAL PAGE 1S5
OF POOR QUALITY

PR Y v R BN

o

.Iq‘.,”. -

(R Y (N

t‘-!wtl -“-W "j ﬂ 11-.4]4}-’-

. :‘n!"ﬁ" ’]‘

Brcan I oo /TRt

ety

L

o

4104 A

Ay Al

v nm* v

Algorithm MINSPAN(G,weight)

Input: Connected graph G = (V, E) where V = {1,...,n}

with edge weights.
Output: Spanning tree of G which has minimum weight
CHOOSE root € V
FOR ALL u € V, key(u) := c0c END FOR
h:=9; v:=root
WHILE v # empty DO
key(v) := —no
FOR EACH [v,w) € E DO
IF weight([v, w]) < key(w) THEN
key(w) := weight([v, w]); prefer(w) := [v, w]
IF member{w,h) THEN changekey(w, key(w), k)
10 ELSE insert(w, key(w), h) END IF
11 ENDIF
12 END FOR
13 (v, k) := deletemin(h)
14 END WHILE
15 FOR ALL u € V - {root}, OUTPUT(prefer(u))
END MINSPAN

© 0 =) U3

Figure 3: Code for MINSPAN Algorithm

Operatiorn Set of Ordered Pairs Trail
insert(2,200) (2,200) smallest
insert(6,500) (2,200),(6,500) 2
deletemin (6,500)

insert(3,800) (6,500),(3,%00) 6
changekey(6,450) (6,450),(3,800) smallest

insert(7,505) (6,450),(7,505),(3,800) 6

deletemin (7,505),(3,800)

insert(5,250) (5,250),(7,505),(3,800) smallest
changekey(7,495) (5,250),(7,495),(3,800) 5
deletemin (7,495),(3,800)

changckey(3,350)
insert(4,700)

(3,350),(7,495) smallest
(3,350),(7,495),(4,700) 7

deletemin (7.495),(4,700)
changekey(4,650) (7,495),(4,650) 7
deletemin (4,650)

deletemnin

deletemnin

Table 1: Data structure operations and certification
teail for MINSPAN

a7

Dﬂiﬁim PAGE ”
OF POOR Quar 1y

cation of the ordered pair with item number i in the
balanced search tree. If there is no such ordered pair
in the tree then the ith pointer is nil. This array allows
rapid execution of operations such as member(i, h) and
delete(i, h).

The certification trail is generated during the first
execution as follows: When CHOOSE root € V is exe-
cuted in the first step, the vertex which is chosen is out-
put. Also, each time insert(i, k, h) or changekey(i, k, h)
are executed, predecessor(i, h) is executed afterwards,
and the answer returned is output. This is illustrated
in column labeled “Trail” in the table above.

3.0.4 Second execution of MINSPAN

The second execution of the algorithm also uses the
MINSPAN code; however, the CHOOSE construct and
the data structure operations are implemented diffe:-
ently than in the first execution. The CHOOSE is
performed by simply reading the first element of the
certification trail. This guarantees the same choice of
a starting vertex is made in both executions. Figure 4
depicts the principle data structure used which we call
an indezed linked list. The array is indexed from 1 ton
and contains pointers to a singly linked list which rep-
resents the current contents of h. Each element in the
list stores an ordered pair in h except the head of the
list which contains the special ordered pair (0, ~INF).
The list is organized such that a traversal from the
head gives the sorted ordering of the current contents
of h from smallest to largest. The ith element of the
array points to the node containing the ordered pair
with the item number i if it is present in k; otherwise,
the pointer is nil. The Oth element of the array points
to the node containing (0, —INF). Initially, the array
contains nil pointers except the Oth element. We now
show how to implement the data structure operations.

To perform insert(i,k,h), it is necessary to read
the next value in the certification trail. This value,
say j, is the item number of the ordered pair which is
the predecessor of (i, k) in the current contents of h.
A new linked list node is allocated and the trail infor-
mation is used to insert the node into the rdata strue-
ture. Specifically, the jth arrav pointer is traversed
to 2 node in the linked list. say 1'. (If j = “smallest”
then the Oth array pointer is traversed.) The new node -
is inserted in the list just after node 1" and before the
next node in the linked list (if there is one). The data
field in the new node is set to (i, k) and the ith pointer
of the array is set to point to the new node. Figure

L

ﬁ iln”

ti

L

it

|

[

i]

n
wi Wy

"o

€

4 shows the insertion of (7,505) into the data struc-
ture given that the certification trail value is 6. Figure
3(a) is before the insertion and Figure 3(b) is after the
insertion.

When the inserf operation is performed, some checks
must be conducted. Firsl, the ith array pointer must
be nil before the operation is performed. Second, the
sorted order of the pairs stored in the linked list must
be preserved afier the operation. That is, if (i, k') is
stored in the node before (i, k) in the linked list and
(", k") is stored after (i, k), then (i, k') < (i, k) <
(i, k") must hold in the total order. If either of these
checks fails then execution halts and “error™ is output.

To perfonin delete(i, h) the ith array pointer is tra-
versed and the node found is deleted from the linked
list. Next, the ith array pointer is set to nil. Figure
4 shows the deletion of item numnber 7 if one consid-
ers Figure 3(a) as depicting the dsta structure before
the operation and Figure 3(b) depicting it afterwards.
When the delete operation is performed one check is
made. If the ith array pointer is nil before the opera-
tion then the execution halts and “error™ is output.

To perform changekey(i, k, k) it suffices to perform
delete(i, h) followed by insert(i, k, h). Note, this means
the next item in the certification trail is read. Also,
the checks associated with both these two operations
are performed and the execution halts with “error”
output if any check fails.

To perform deletemin{h) the Oth array pointer is
traversed. to the head of the list and the next node
in the list is accessed. If there is no such node then
“empty” is returned and the operation is complete,
Otherwise, suppose the node is ¥ and suppose it con-
tains the ordered pair (i, k), then the node 1" is deleted
from the list, the ith array pointer is set to nil, and
(3, k) is returned.

Lastly, to perform member(i, k) the ith array pointer
is examijned. If it is nil then false is returned, other-
wise, true is returned. The predecessor(i, h) operation
is not used in the second execution.

This completes the description of the second exe-
cution. To show that what we have described is a ¢cor-
rect implementation of the certification trail method
requires a proof. The proof has several parts of varying
difficulty. First, one must show that if the first execu-
tion is fault-free then it outputs 8 minimum spanning
tree. Second, one must show that if the first and sec-
ond executions are fauli-free then they both output
the same minimum spanning tree. Both these parts of

2%

(a))]

° -INF ° - -INF -
' AN

2 2 450
3 450 3

4 &

. . 505
B 800 s

? 7 800

Figure 4: Example of the data structure used in the
second execution of MINSPAN.,

the proof are not difficult to show.

The third more subtle part of the proof deals with
the situation in wlich only the second exccution is
fault-free. This means an incorrect certification trail
may be generated in the first execution. In this case,
we must show that the second execution outputs ei-
ther the correct minimum spanning tree or “error™.
The checks that were described above have been care-
fully designed to assure precisely this property by de-
tecting any errors that would prevent the execution
from gencraling the correct output. Because of space
restrictions we will not give the proof here.

3.0.5 Time complexity comparisons of the two
executions

In the first execution each data structure operation
can be performed in Oflog(n)) time where [V| = n.
There are at most O(m) such operations and O(m)
additional timme overhead where |E| = m. Thus, the
first execution can be performed in O{inlog(n)) We
note that this algorithm does not achieve the fastest
known asymptotic time complexity which appears in
[10]. However, the algorithm we have presented has a
significant! smaller constant of proportionality which
makes it competitive for reasonably sized graphs. In
addition, it provides us with a relatively simple and
illustrative example of the use of a certification trail.
It should be mentioned that we have developed a more
complex ceriification trail solution for an asymptoti-
cally faster minimum spanning tree algorithm which
uses fibonacci heaps.

A A Sl RIS A PRE I § ¢

AR IEE]

w

TR

o]]!

=
H
1
=
1
%

kel

In the second execution each data structure oper-
ation can be performed in O(1). There are still at
most O(m) such operations and O(m) additional time
overhead. Hence, the second execution can be per-
formed in O(m) time. In other words, because of the
availability of the certification trail, the second ezecu-
tion is performed in linear time. There are no known
O(m) time algorithms for the minimum spanning tree
problem. Komlos was able to show that O(m) com-
parisons suffice to find the minimum spanning tree.
However, there is ne known O(m) time algorithm to
actually find and perform these comparisons. Even
the related “verification™ problem has no known lin-
ear time solution. In the verification problem the input
consists of an edge weighted graph and a subtree. The
ouput is “yes” if the subtree is the minimum spanning
tree and “no™ otherwise. The best known algorithm
ior this problem was created by Tarjan [25] and has
the nonlinear time complexity of O(ma(m, n)), where
a(m, n)is a functional inverse of Ackerman’s function.
The fact that the data in a certification trail enables
a minimnm spanning tree to be found in linear time
is, we believe, intriguing, significant, and indicative of
the great promise of the cerlification trail technique.

3.1 Concurrency of Executions

In some cases, it is possible to start the second execu-
tion before the first execution has terminated. This is
a highly desirable capability when additional hardware
is available to run the second execution (for example,
with multiprocessor machines, or machines with co-
processors or hardware monitors).

In the case of the minimum spanning tree prob-
lem, the two executions can be run concurrently. It
is only necessary for the second execution to read the
certification trail as it is generated - one item number
at a time. Thus there is a slight time lag in the sec-
ond execution. This potential for concurrecy has been
found in other problems we have examined, e.g., the
Huffman tree problem.

An additional opportunity for overlapping execu-
tion occurs when the system has a dedicated compara-
tor. In this case it is sometimes possible for the two
executions to send there output to the comparator as
they generate it. For example, this can be done in the
minimum spanning tree problem where the edges of
the tree can be sent individually as they are discov-
ered by both executions.

429

4 Comparison of Techniques

The certification trail approach, whether implemented
in hardware or software or some combination thereof,
has resemblances with other fault tolerant techniques
that have been previously proposed and examined, but
in each case there are significant and fundamental dis-
tinctions. These distinctions are primatily related to
the generation and character of the certification trail
and the manner in which the secondary algorithm or
system uses the certification trail to indicate whether
the execution of the primary system or algorithm was
in error and/or to produce an output to be compared
with that of the primary system.

To begin, we compare the certification trail ap-
proach to N-version programming(8, 4]. This approach
specifies that N different implementations of an al-
gorithm be independently executed with subsequent
comparison of the resulting N outputs. There is no
relationship among the executions of the different ver-
sions of the algorithms other than they all use the
same input; each algorithm is executed independently
without any information about the execution of the
other algorithms. In marked contrast, the certification
trai] approach allows the primary system to generate a
trail of information while executing its algorithm that
is critical to the secondary system’s execution of its
algorithm. In effect, N-version programming can be
thought of relative to the certification trail approach
as the employment of a null trail.

A software/hardware fault tolerance technique called
the recovery block approach [20, 2, 17] uses acceptance
tests and alternative procedures to produce what is to
be regarded as a correct output from a program. When
using recovery blocks, a program is viewed as a being
structured into blocks of operations which after exe-
cution yield outputs which can be tested in some in-
formal sense for correctness. The rigor, completeness,
and nature of the acceptance test is left to the program
designer {2]. Indeed, formal methodologies for the def-
inition and generation of acceptance tests have thus
far not been fully established. Regardless. the certifi-
cation trail notion of a secondary sveiem that receives
the same input as the primary system and executes
an algorithm that takes advantage of this trail to effi-
ciently produce the correct output and/or to indicate
that the execution of the first algorithm was correct
does not fall into the category of an acceplance test.

Recently Blum and Kannan[7] have defined what
they call a program checker. A program checker is

OMGINAL PAGE 18
OF MOOR QUALITY

[

!
|

.

(it

i

IM

i

]

L

an algorithm which checks the output of another algo-
rithmn for correctness and thus it is similar to an accep-
lance test in a recovery block. An example of a pro-
gram checker is the algorithm developed by Tarjan|25]
which takes as input a graph and a supposed mini-
mum spanning tree and indicates whether or not the
tree actually is &8 minimum spanning tree. The Blum
and Kannan checker is actually more general than this
because it is allowed to be probabilistic in a care-

fully specified way. There are two main differences

between this approach and the certification trail ap-
proach. First, a program checker may call the algo-
rithm it is checking a polynomial number of tiines. In
our approach the algorithm being checked is tun once.
Second, the checker is designed to work for a prob-
lem and not a specific algorithin. That is, the checker
design is based on the input/cutput specification of a
problem. The certification trail approach is explicitly
algorithm oriented. In other words, a specific algo-
rithm for a problem is modified to output a certifi-
cation trail. This trail sometimes allows the second
execulion to be faster than any known program check-
ers for the problem. This is the case for the minimum
spanning tree problem.

Space limitations preclude comparisons with the
following other relevant techniques: watchdog proces-
sors [18, 6], algorithm based fault tolerance [13), exe-
cutable assertions [3).

5 Concluding Discussion

We have presented a new, powerful fault tolerant com-
puting technique called the certification trail approach.
Our description of this technique has been only in
lerms of applications to software fault tolerance, but
the certification trail approach can also be implemented
with hardware. We have illustrated the certification
trail technique by applying it to a minimum spanning
tree algorithm. The full version of this paper includes
applications to a Huffman tree algorithm, and a con-
vex hull algorithm. It should be understood that the
approach is in no way limited to these algorithins. We
believe that our consideration of these algorithms gives
insight into the significance and desirability of the ap-
proach. We have found several other algorithms to
which our techniques apply including an algorithm for
the shortest path problem and we believe the technique
will be widely applicable. We have also examined the
general problem of “certifying™ data structure opera-

43

tions as discussed above and have proven resulqs for
additional data structures. These resulis are impor.
tant because they allow the certification trail approach
to be applied to eny algorithm which uses one of these
dats structures.

In the problem discussed an asymptotic speed up
was achieved between the first execution and the sec.

-ond execution which was greater than any constan

factor. We note, however, even if the speed up weqe
only by a constant factor, it would still make sense
to use the technique because execution time would be
saved. We also note that the certification trail tech.
nique can be used in conjunction with other software
fault tolerance techniques. For example, multiple al.
gorithms can be developed which generate and read
multiple (but different) certification trails. Further,
these algorithims could be written by separate teams of
individuals. A general architecture for the interaction
of these algorithms is an important research topic. For
example, a “cascade™ of algorithms numbered from 1
to N could be designed such that algorithm i sends
8 certification trail to i + 1 which allows i + 1 1o rup
faster than i. When errors are detected, other ves.
sions of algorithms can be invoked which may use an
earlier certification trail or ignore it. The ideas devel-
oped in recovery blocks and N-version programming
among others could be used as guidance in exploring
such issues.

References

(1) Adel'son-Vel'skii, G. M., and Landis, E. M., “An
algorithm for the organization of information™,
Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

[2) Anderson, T., and Lee, P., Fault tolerance: prin-
ciples and practices, Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[3) Andrews, D., “Using excutable assertions for test-
ing and fault tolerance,” Dig. 9th Annu. Int.
Symp. Fault Tolerant Comput.. pp. 102-105, 1479,
June 20-22. '

[4] Avizienis, A., “The N-version approach te fault
tolerant software,” JEEE Trans. on Softwarc En-
gineering, vol. 11, pp. 1491-1501, Dec., 1985.

(5] Bayer, R., and Mc(reight, E., “Organization of
large ordered indexes™, Acta Inform., pp 173-18Y,
1, 1972,

i

il

o
AT

{ o

Ll
el 1

(6] Blough, D., and Masson, G., “Performance anal-
ysis of a generalized concurrent error detection
procedute,” JIEEE Trans. on Compulers vol. 39,
Jan., 1990.

{7] Blum, M., and Kannan, S., “Designing programs
that check their work™, Proceedings of the 1989
ACM Symposium on Theory of Computing, pp.
86-97, ACM Press, 1989.

[8] Chen, L., and Avizienis A., “N-version program-
ming: a fault tolerant approach to reliability of
software operation,” Digest of the 1978 Fault Tol-
erant Computing Symposium, pp. 3-9, IEEE Com-
puter Society Press, 1978.

[9] Dijkstra, E. W., “A note on two problems in con-
nexion with graphs,” Numer. Math. I, pp. 269-
271, Sept., 1959,

. [10} Gabow, H. N., Galil, Z., Spencer, T., and Tar-

jan, R. E., “Efficient algorithms for finding min-
imum spanning trees in undirected and directed
graphs,” Combinatorica 6, pp. 109-122, 2, 1986.

[11] Graham, R. L., and Hell, P., “On the history of
the minimum spanning tree problem,” Ann. Hist.
Comput., pp. 43-47, Jan., 1985.

[12] Guibas, L. J., and Sedgewick, R., “A dichromatic
framework for balanced trees”, Proceedings of the
Nineteenth Annual Symposium on Foundations
of Computing, pp. 8-21, IEEE Computer Society
Press, 1978.

(13) Huang, K.-H., and Abraham, J., “Algorithm-
based fault tolerance for matrix operations,”
IEEE Trans. on Computers, pp. 518-529, vol. C-
33, June, 1984.

(14) Johnson, B., Design and analysis of faull tol-
erant digital systems Addison-Wesley, Reading,
MA, 1989.

[1-5] Kane, J.R. and Yau, S.5., “Concurrent software
fault detection,” JEEE Trans. Software Eng. , vol.
SE-1, pp. 87-99, March 1975.

[15] Komlos, J., “Linear verification for spanning
trees”, Proceedings of the 198{ Symposium on
Foundations of Computing, pp. 201-206, IEEE
Coniputer Society Press, 1984.

43/ OF POOR QUALITY

[17] Lee, Y.H. and Shin, K.G., “Design and evaluation
of a fault-tolerant multiprocessor using hardware
recovery blocks,” JEEE Trans. Comput., vol. C-
33, pp. 113-124, Feb. 1984,

(18] Mahmood, A., and McCluskey, E., “Concurrent
error detection using watchdog processors - a sur-
vey," IEEE Trans. on Computers, vol. 37, pp.
160-174, Feb., 1988.

(19} Prim, R. C., “Shortest connection networks and
some generalizations,” Bell Syst. Tech. J., pp.
1389-1401, Nov., 1957.

[20] Randell, B., “System structure for software fault
tolerance,” IEEE Trans. on Software Engineer-
ing, vol. 1, pp. 220-232, June, 1975.

(21} Shen, J.P. and Schuette, M.A., “On-line self-
monitoring using signatuted instruction streams,”
Proc. 1983 Int. Test Conf.,, pp. 275-282, Oct.,
1983.

[22] Siewiorek, D., and Swarz, R., The theory and
practice of reliable design, Digital Press, Bedford,
MA, 1982.

[23]) Sridhar, T. and Thatte, S.M., “Concurrent check-
ing of program flow in VLSI processors,” Dig.
1982 Int. Test Conf., pp. 191-199, Nov., 1982.

(24] Tarjan, R. E., Data Structures and Network Algo-
rithms, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1983.

(25] Tarjan, R. E., “Applications of path compression
on balanced trees”, J. ACA, pp. 690-715, Oct.,
1979.

[26] Tomas, S. P. and Shen, J. P., “A roving monitor-
ing processor for detection of control flow errors
in multiple processor systems,” Proc. JEEE Int.
Conf. Comput. Design: VLSI Comput., pp.531-
539, Oct., 1985.

[27) Yau, S.S, and C'hen. F.-C... “An approach to con-
current control flow checking.” JEEE Truns, Soft-
ware Eng., vol. SE-G. pp. 126-157, March 1980.

ORIGINAL PAGE OR{GINAL PAGE 8

OF POOR QUALITY

Firat Execution
laput
- foput Ceniliconen
Trail
= Input Second Executon

Figure 1: Certification trail method.

output such that (d,s) € P.

1|

Definition 2.2 Let P: D — S be a problem. A solu-
tion to this problem using a certification trail consists
— of two functions F; and F; with the following domains
- and ranges F; : D —~ SxTand F3 : Dx T ~

functions must satisfy the following two properties:

(1) for all d € D there exists # € S and

there exists ¢t € T such that

Fy(d) = (s,t) and F3(d,t) = s and (d,s) € P
(2)foralde D andforallte T

either (F3(d,t) = s and (d,s) € P) or

F3(d, t) = error.

We also require that F; and F; be implemented
=.. %0 that they map elements which are not in their re-
$pective domains to the error symbol. The definitions
‘b°ye assure that the error-detection capability of the
Certification-trail approach is similar to that obtained
"“1} the simple time-redundancy approach discussed
- ml_ler. (That is, if transient hardware faults occur
ey uNng only one of the executions then either an er-
;‘r Tor will be detected or the output will be correct.) It
to 'h°‘l_ld be further noted, however, the examples to be
. considered will indicate that this new approach can
S save overall execution time.

A Observant readers of our easlier paper [11]in which
¢ Introduced the notion of a certification trail might
&ve noticed that our certification-trail solution for the
“Spanning tree was generalisable. The generalised

or nique allows one to generate a certification trail
“many algorithms which use a balanced binary tree
. a stxucture.. However, the technique relies on the
'On:‘ﬂll execution of the predecessor operation and
the ¢ data structures such as heaps cannot execute
Predecessor operation efficiently. The techniques
€scribed in this paper are even more general and pow-

rful, and they do apply to heaps.

- 'h;rhe degree of diversity or independence achieved
. D using certification trails depends on how they

S U {error}. T is the set of certification trails. The -

are used. A fuller discussion of this and of the re-
lationship between certification trails and other ap-
nroaches to software fault tolerance is contained in the
expanded version of [11]. This current paper presents
asymptolic analysis which shows that the certification-
trail approach is desirable even when the overhead of
generating the certification-trail is included. We are
currently working on an experimental analysis of the
method and initial results are quite promising.

3 Answer-Validation Problem for
Abstract Data Types

Our general approach to applying certification trails
uses the concept of an abstract data type. Some exam-
ples of abstract data types are given later in this paper.
Here we mention some important common properties
and give a short illustration. Each abstract data type
has 8 well defined data object or set of data objects,
and each abstract data type has a carefully defined fi-
nite collection of operations that can be performed on
its data object(s). Each operation takes a finite num-
ber of arguments (possibly sero), and some but not
all operations return answers. An example of an ab-
stract data type is a priority queue. The data object
for a priority queue is an ordered pair of the form (i, k)
where i is an item number and k is a key value. A pri-
ority queue has two operations: insert(i,k) and delmin.
The insert operation has two arguments: item number
i and key value k. The insert operation does not return
an answer. The delmin operation has no arguments,
but it does return an answer. The precise semantics
of these operations are given later in this paper.

For each abstract data type we define an answer-
validation problem. Intuitively, the answer validation
problem consists of checking the correctness of a se-
quence of supposed answers to a sequence of opera-
tions performed on the abstract data type. More for-
mally, the input to the answer-validation problem is
a sequence of operations on the abstiract data type
together with the arguments of each operation. In ad-
dition, the sequence contains the supposed answers for
each of the operations which return answers. In par-
ticular, each supposed answer is paired with the oper-
ation that is supposed to return it. Examples of such
inputs are given in the columns labelled “Operation”
and “Answer” of table 1 and table 2.

The output for the answer-validation problem is
the word “correct” if the answers given in the input
match the answers that would be generated by actually
performing the operations. The output is the word
“incorrect” if the answers do not match. It is also
useful to allow the output word to say “ill-formed™.
This output is used if the sequence of operations is ill-
formed, e.g., an operation has too many arguments or
an argument refers to an inappropriate object.

433

PRBCHEDING PAGE BLANK NOT FIL MED

I

e
=
e

N

The Twenty-First International Symposium or Fault-Tolierant

Certification Trails for Data Structures

Gregory F. Sullivan!
Gerald M. Masson®

Dept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218

Abstract

Certification trails are a recently introduced and promis-

ing approach to fault detection and fault tolerance [11).
In this paper, we significantly generalize the applica-
bility of the certification trail technique. Previously,
certification trails had to be customized to each algo-
rithm application, but here we develop trails appro-
priate to wide classes of algorithms. These certifica-
tion trails are based on common data-structure oper-
ations such as those carried out using balanced binary
trees and heaps. Any algorithm using these sets of
operations can therefore employ the certification trail
method to achieve software fault tolerance. To exem-
plify the scope of the generalization of the certification
trail technique provided in this paper, constructions of
trails for abstract data types such as priority queues
and union-find structures will be given. These trails
are applicable to any data-structure implementation of
the abstract data type. It will also be shown that these
ideas lead naturally to monitors for data-structure op-
erations.

Keywords: Software fault tolerance, error monitor-
ing, certification trails, design diversity, data struc-
tures.

1 Introduction

In this paper we significantly generalize the novel and
powerful certification-trail technique for achieving fault
tolerance in systems that was introduced in {11]. Al-
though applicable to both hardware and sofiware, we
restrict our discussion of the certification-trail tech-
nique in the following to software fault tolerance. To
explain the essence of the certification-trail technique
for software fault tolerance, we will first discuss & sim-
pler fault-tolerant software method. In this method
the specification of a problem is given and an algo-
rithm to solve it is constructed. This algorithm is ex-
ecuted on an input and the output is stored. Next,
the same algorithm is executed again on the same in-
put and the output is compared to the earlier output.
If the outputs differ then an error is indicated, other-
wise the output is accepted as correct. This software
fault tolerance method requires additional time, so-
called time redundancy [8, 10}; however, it requires no

1 Research partially supported by NSF Grants CCR-8810569
snd CCR-5908092.

2Research partially supported by NASA Grant NSG 1442.

CH2985-0/91/0000/0240/$01.00 © 1991 IEEE

240

additional software. It is particularly valuable for g,

tecting errors caused by transient fault phenomena. I¢
such faults cause an error during only one of the ey,
ccutions then either the error will be detected or the
output will be correct. The second possibility, of unde.
tecied faults, occurs when the output of the executiog
is uneffected by the faults.

The certification-trail technique is designed to ob-
tain similar types of error-detection capsbilities but
expend fewer resources. The central ides, as jliys.
trated in Figure 1, is to modify the first algorithm
so that it leaves behind a trail of data which we call a
certification trail. This data is chosen so that it can al-
low the the second algorithm to execute more quickly
and/or have a simpler structure than the first algo-
rithm. As above, the outputs of the two executions
are compared and are considered correct only if they
agree. Note, however, we must be careful in defining
this method or else its error detection capability might
be reduced by the introduction of data dependency
between the two algorithm executions. For example,
suppose the first algorithm execution contains an error
which causes an incorrect output and an incorrect trail
of data to be generated. Further suppose that no error
occurs during the execution of the second algorithm. It
still appeats possible that the execution of the second
algorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be “fooled™ by the
data left behind by the first execution. The definitions
we give below exclude this possibility. They demand
that the second execution either generate a correct an-
swer or signal that an error has been detected in the
data trail.

2 Formal Definition of a Certi-
fication Trail

In this section we will give a formal definition of 2
certification trail and discuss some aspects of its real-
izations and uses.

Definition 2.1 A problem P is formalized as a rela-
tion, i.c., a set of ordered pairs. Let D be the domain
(that is, the set of inputs) of the relation P and let
S be the range (that is, the set of solutions) for the
problem. We say an algorithm A solves a problem P
iff for all d € D when d is input to A thenans € Sis

dzd — 429

PREGGEDING PAGE BLANK NOT FILMED

pOe WYV %Y

q_ ’.'é
Computing (1’q ==
Sy g

1

(N

0

[FNT)

i

s

i

!

[
=]
=
=
W

I

l EII\W !!‘

The answer-validation probiem is similar to the
iden of an acceptance test which is used in the recovery-
block approach (9, 2] to software fault tolerance.. The
main difference is that an answer-validation problem is
dependent upon a sequence of answers, not just an in-
dividual answer. Hence, if an incorrect answer appears
in the sequence, it may not be detected immediately.
It is guarenteed, however, that an incorrect answer
will be detected at some point during the processing
of the entire sequence. By allowing for this latency in
detection, it is possible to create 8 much more efficient
procedure for solving the answer-validstion problem.

In this paper we shall solve the validation problem
for two abstract data types. In the full version of this
paper we solve the answer-validation problem for more
general data types [12].

The most important aspect of the answer-validation
problem is that it is often possible to check the cor-
reciness of the answers to a sequence of operations
much more quickly than actually calculating what the
answers should be from scratch. In other words, the
answer-validation problem has a smaller time complex-
ity than the original abstract-data-type problem. For
example, to calculate the answers to a sequence of n
priority-queue operations takes 2(nlog(n)) time, how-
ever it is possible to check the correctness of the an-
swers in only O(n) time. This speedup is very useful
in fault-detection applications.

It is possible to run an answer-validation algorithm
for some abstract deta type concurrently with some
algorithm which uses the abstract data type. The
answer-validation slgorithm could act as a monitor
making sure that all interactions with the abstract
data type are handled correctly. This is valuable be-
cause many algorithms spend a large fraction of their
time operating on abstract data types. Note, the over-
head of this monitor is less than the overhead of ac-
tually performing the data-type operations a second
time.

One possible application of the answer-validation
problem occurs when it is used in conjunction with a
repairable dsta structure which allows for repair but
does not automatically attempt to detect faults [16].
Suppose an abstract data type is implemented with
a repsirable data structure. One can use an answer-
validation procedure to detect errors in the answers
generated by the sbstract dete type. When an er-
ror is detected, a repair of the data structure can be
attempted. In some cases, recovery and continued ex-
ecution will be possible.

In the next section, we will show how to create cer-
tification trails for programs which use abstract data
types when those data types have efficient solutions
for their answer-validation problems.

LS)
IS
ta

4 Schema for using Certificatigy
Trails

Suppose that we have developed an efficient solution ¢,
the answer-validation problem for some absiract day,
tyne. By efficient we mean the time complexity o
the answer-validation problem is smaller than the tim,
complexity of the original abstract-data-type problen
Further, suppose that we wish to run an algorithy,
say A, which uses that abstract data type. To app]‘:
the certification trail method we can use the followin's
schema to yield the two executions:

First Execution:

Execute algorithm A.

Each time an absiract-data-type operation is performe:
append to the certification trail the identity of the op. '
eration, the arguments and the answer.

Second execution:

Phase One:
Validate the correctness of the operations and sup
posed answers given in the certification trail. If the
velidation returns “incorrect™ or “ill-formed”™ then out.
put “error” and stop. Otherwise, continue.

Phase Two:
Execute algorithm A.
Each time an abstract-data-type operation is performed,
read the next entry in the certification trail. Make sure
that the operation and the arguments in the certifica-
tion trail agree with those requested in the algorithm.
If not output “error” and stop. Otherwiss, use the
answer given in the certification trail and continue.

In the final step the outputs from the 1wo execu-
tions are compared and the output is accepted or an et-
ror is signaled. This schema car yield execution times
which are significantly faster than the execution time
obtained by running algorithm A twice, yet these two
methods give similar fault detection capabilities. That
i», if transient hardware faults occur during or'y one
of the executions then cither an error will be detected
or the output will be correct. Note, the first execution
can be slower than a simple execution of algorithm
A since it must output a certification trail. However,
the second execution can be significantly faster than
a simple execution of the algorithm since the interac-
tions with the abstract data type take less time overall.
Th= n-t efiect can be 2 major sperdup.

Suppose an algorithm uses multiple abstract data
types and suppose there are «fficient answer-validation
aigorithms for each of these abstract data types. 1t is
casy o see how our method generalizes. We can leave
behind a generalized certification trail which consisis
of & separate certificatior trajl for each of the abstract
cata types. The effect on the speedup of the second
execution will be cumulative.

PRECEDNNG PAGE BLANK NOT FILMED

ﬂ‘...,...',m,‘.‘q .
i .

=TT

h.-"l ‘ !

T I

1]

"

it 00 (Aname I ioena |

!

Sy

4

]

Figure 2: Union Tree and with Find Edges

5 Answer Validation for Disjoint-
Set Union

As our first example we will discuss the disjoint-set
tnion problem. This problem concerns a dynamic col-
lection of sets in which pairs of sets can be combined
to yield new sets. The underlying universe of set el-
ements consists of the integers from 1 to n inclusive.
Also, the universe of set names consists of the integers
from 1 to n inclusive. There are three operations that
can be performed:

create(A,x) creates a singleton set named A which
cont'ains element x. Since sets must be disjoint we
tequire that x not already be in some set.

union(A,B) creates a new set which is the union
of the sets named A and B. This new set is called A
and the set named B becomes undefined. It is required
that the sets named A and B are originally defined and
are disjoint. ’

find(x) returns the name of the set which contains

element x. It is required that x be a member of some
unique set,

If an operation violates one of the requirements
described above then it is considered to be ill-formed.

o, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.

. In table 1 we give an example of a sequence of
Joint-set-union operations together with the answers
for find operations. In addition, the collection of sets
s depicted as it is changed by the operations. For sim-
Plcity, in this example cach set name corresponds to
the integer originally contained in the set when it is
Created. Sets are listed by first giving the name of the
::: followed by a colon and then the contents of the
_The disjoint-set-union problem is a classic problem
which has many applications [4] such as the off-line

Operation Answer Status of sets
create(1,1) 1: 1;1

creste(2,2) 1:{1},2:{2}

union(1,2) 1:{1,2}

find(2) 1

create(3,3) 1:{1,2},3:{3
create(4,4) 1:{1,2},3:{3}.4: 4;
create(5,5) 1:{1,2},3:{3},4:{4},5:{5}
union(5,3) 1:{1,2},4:{4},5:{3,5}
union(5,1) 4:{4},5:{1,2,3,5}

find(2 5

find(5) 5

create(6,6) 4:{4},5:{1,2,3,5},6:{6}
union(4,6) 4:{4,6 .5:11.2.3.5}
create(7,7) 4:{4,6},5:{1,2,3,5},7:{7}
union(4,7) 4:{4,6,7},5:{1,2,3,5}
find(6) 4

Table 1: Sequence of operations for a Disjoint Set
Union

min problem, connected components, least-common
ancestors, and equivalence of finite automata. Of par-
ticular interest is the time-complexity of performing a
sequence of operations. Let us say the total number of
operations is m, which is assumed to be grester than
or equal to n. Recall, n is the number of set elements
and set names.

Tarjan gave the tight upper bound of O(ma(m,n))
[13, 14] for this problem. The « refers to the inverse
of Ackermann’s function which is a very slowly grow-
ing function. His solution and eatlier solutions used
a path-compression heuristic {15]. Fredman and Saks
gave a lower bound of (ma(m,n)) [5] in a general
cell-probe model. Gabow and Tarjan show how to
solve some important special cases of this problem in
O(m) time [6).

We now consider the answer-validation problem for
the disjoint-set-union data type. We will show that
this problem can be soclved in O(m) time where m
is the number of operations. Note, this time com-
plexity is superior to the complexity of actually per-
forming the sequence of operations as discussed above.
One method for solving this problem in O(m) time
uses the powerful techniques of Gabow and Tarjan {6).
However, we shall present a simpler method with a
small constant of proportionality that is tailored to
this problem.

To solve this problem we will build a forest based
on the union operations in the sequence. In addition,
we shall add edges to this forest based on the find
operations. As a final step we will perform a traversal
of the forest and perform appropriate checks. The solid
edges in figure 2 indicate the forest we would build for

m IW‘ ey
A TR

o

m

it

P

the set of operations given in table 1. The dashed
edges indicate the edges we would add to the forest
based on the find operations.

Algorithm for Answer Validation for Disjoint-
Set Union

Input: sequence of m operations together with argu-
ments and supposed answers for the disjoint-set union
data type.

Output: “correct™, “incorrect” or “ill-formed™

Declarations: Type treencde has fields left and right.
Type treeleaf contains a list of pointers such that each
pointer points to a treenode or a trecleaf. Array ac-
tiveset is indexed by set name. Each array element is
& pointer to a treenode or a trecleaf. Array whereisis
indexed by an element number. Each array element
is & pointer o a treeleaf. Initially, all pointers are nil
and lists are null.

In the first phase of the algorithm we process each op-
cration as it appears serially using the following rules:

create(A,x): If activeset[A] or whereis[x] are non-nil
then output “ill-formed” and stop. Otherwise, allocate
& treeleaf and set activeset[A] and whereis[x] to the
allocated node.

union(A,B): If activeset[A] or activeset[B] are nil then
output “ill-formed™ and stop. Otherwise, allocate a
treenode and set left to activeset[A] and right to ac-
tiveset{B]. Next set activeset{A] to the treenode and
set activeset[B] to nil.

find(x) A: (where A is the supposed answer to the
find.) If whereis[x] is nil then output “ill-formed".
Otherwise, whereis{x] points to some treeleaf. Call it
tleaf. If activeset[A] is nil then output “ill-formed™.
Otherwise, activesetEA] points to some treeleaf or treen-
ode. Callit t. Add a pointer to t to the list of pointers
contained in treeleaf.

In the second phase of the algorithm we shall traverse
the structure we have built.

Scan thru the array activeset to find non-nil pointers.
It is not hard to see that each non-nil pointer points
to the root of s tree made up of nodes of type tnode
and tleaf. The tree uses the edges in the left and right
fields of tnode.

For each such tree perform a depth-first search. When-
ever the search reaches a node of type tlea. traverse
the list of pointers that it contains. Check that each
pointer points to a node which is currently on the stack
which is used to perform the depth-first search. This is
equivalent to checking that each pointer in tleaf points
to a node which is an ancestor of tleaf in the tree.

If some pointer does not point to an ancestor then out-
put “incorrect” and stop. Otherwise, output “correct™
and stop.

24

Theorem 5.1 The algorithm for anrwer validation of
the disjoint-sel-union abstract data type is correct.

Theorem 5.2 The answer validation algorithm for 4;,.
joint scf union has a time complezity of O(m) for pr.
ccasing a sequence of m operations.

We omit these two theorems which overall are noy
difficult to show. We comment on one aspect of in,.
plementation. In the second phase of the answer vg;.
dation algorithm it is necessary to determine if certain
nodes are on the stack during the tree traversal. Thig
can be done efficiently as follows: First, each treepn.
ode and each treeleaf can be assigned a unique iden.
tifier in the range 1 to in as it is allocated. Next, 5
boolean vector of size m indexed by the unique iden.
tifiers described above can be allocated. This vecior
can be used to keep track of which nodes are on the
stack during tree traversal by turning bits on and of],
This modified tree traversal algorithm still takes O(m)
time.

6 Generalized Priority Queue

We now describe a somewhat general abstract data
type. We will solve the answer validation problem for
restricted versions of this data type. The data consists
of a set of ordered pairs. The first element in these or-
dered pairs is referred to as the item number and the
second element is called the key value. Ordered pairs
may be added and removed from the set, however, at
all times the item numbers of distinct ordered pairs
must be distinct. 1t is possible, though, for multiple
ordered pairs to have the same key value. In this pa-
per the itcm numbers are integers between 1 and n,
inclusive. Our default convention is that i is an item
number, k is a key value and A i< & set of ordered pairs.
A total ordering on the pairs of 8 set can be defined
lexicographically as follows: (i, k) < (', k') il k < ¥’
or (k = k" and i < i'). The abstract data types we will
consider support a subset of the following operations.

member(i) returns a boolean value of true if the set
contuins an ordered pair with item number i,
otherwise returns false.

insert(i, k) adds the ordered pair (i, k) {n the set. We
require that no other pair with itemn number i he
“in the set.

delete(i) deletes the unique ordered pair with item
number i from the set. We require that a pair
with item number i be in the set initially.

chengekey(i, k) is executed only when there is an or-
dered pair with item number i in the set. This
pair is replaced by (i, k).

Laag

Ll

[

P R T

-~
| e

[

anee: e

T Operation Answer Validation stack

1 insert(6,300)

2 insert(2,404

3 insert(3,250

4 deletemin (3,250) (3,250,4)

5 insert(10,248)

6 insert(12,245)

7 insert(4,260)

8 deletemin (12,245) (12,245,8),(3,250,4)
insert(13,140)

10 insert(5,142)

11 deletemin (13,140) (13,140,11),(12,245,8),(3,250,4)
12 deletemin (5,142) (5,142,12),(12,245,8),(3,250,4)
13 deletemin (10,248) (10,248,13),(3,250,4)

14 deletemin (4,260) (4,260,14)

o

Table 2: Sequence of Priority Queue operations illus-
trating answer validation algorithm

deletemin (or deletemax) returns the ordered pair which
is smallest (or largest) according to the total or-
der defined above and deletes this pair. If the
set is empty then the token “empty” is returned.

min (or max) returns the ordered pair which is small-
est (or largest) according to the total order de-
fined above. If the set is empty then the token
“empty” is returned.

If an operation violates one of the requirements de-
scribed above then it is considezed to be ill-formed.
Also, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.

Many different types and combinations of data struc-
tures can be used to support different subsets of these
operations efficiently.

7 Answer Validation for Prior-
ity Queue

We will first consider the priority-queue abstract data
type which allows only two operations: insert and
deletemin. An example of a sequence of such oper-
ations appears in table 2. Many different data struc-
tures can be used to implement priority queues includ-
ing heaps [17), balanced search trees such as AVL trees
(1), zed-black trees [7), or b-trees [3]. It is possible to
Process a sequence of O(n) operations in O(nlog(n))
time using the data structures above. Furthermore,
there is a lower bound of (nlog(n)) because it is pos-
sible to sort using a priority queue. Remarkably, the
answer-validation problem can be solved using only
O(n) time, as documented below.

Each operation is time-stamped, i.e., the opera-
tions are assigned integers sequentially starting with
1 which is easy to do with a counter. The answer-
validation algorithm uses a stack called deletestack.
The contents of this stack are illustrated in table 2.
The top of the stack is on the left in table 2.

Let us consider the kinds of tests that an answer-
validation algorithm for a priority queue might per-
form. Suppose (i,k) is the answer to some deletemin
operation. Further, suppose (i’,k') was deleted in a
previous deletemin operation. If the priority queue is
correct then either (i,X)>(i',k') or (i',k') was deleted
before (i,k) was inserted. This suggests that the time
of insertion and deletion for elements should be recorded
and the algorithm below does this. Unfortunately, if
an algorithm compares an ordered pair which has been
deleted against all previously deleted ordered pairs
then the algorithm complexity is at least O(m?). To
avoid this the deletestack is used. The deletestack was
designed to allow many comparisons to be done im-
plicitly and to reduce the complexity.

Algorithm for Answer Validation for Prior{ty
Queue

Input: sequence of O(n) operations together with ar-
guments and supposed answers for the priority-queue
data type.

Output: “correct”, “incorrect” or “ill-formed”

Declarations: Array called inserttime indexed by item
number. Array elements contain either “absent” or
a time-stamp. Array called keyvalue indexed by item
number. Atray elements contain either “absent™ or
a key value. Initially, each element in these two ar-
rays contains “absent”. Stack of ordered triples called
deletestack. Each ordered triple has the following form:
first element is an item number, second element is a
key value, and third element is a time-stamp. deletes-
tack is initially empty.

In the first phase of the algorithm we process each op-
eration as it appears serially using the following rules:

Let currenttime refer to the time-stamp of the opera-
tion being processed.

insert(i,k): If inserttime[i]#“absent” then output “ill-
formed™ and stop. Otherwise, let inserttime[i] = cur-
renttime and let keyvaluelij=k.

deletemin {i.k): (where (i,k) is the supposed answer
to the deletemin operation.) If inserttime(ij="absent™
or keyvalue[i]#k then output “ill-formed™ and stop.

Otherwise, let (i',k’) be the item nuimnber and key
number of the triple on the top of deletestack (if there
is one). Repeatedly pop the stack until (i,k)<(i’.k’) or
until deletestack is empty.

If deletestack is empty then push the triple
(i,k,currenttime) onto deletestack. Further, let insert-

{

alll

il

|

time[i]="“absent” and let keyvalue[i]=“absent™ and pro-
cess the next priority queue operation.

If deletestack is non-empty then let the top element
be (i',k' deletetime’). If inserttimeli]<deletetime’ then
oulput “incorrect™ snd stop. Otherwise, push the
triple (i,k,currenttime) onto deletestack. Next, let in-
serttime(i]=“absent” and let keyvalue[i)=“absent™ and
process the next priority queue operation.

In the second phase of the algorithm we operate
on the items which have been inserted but have never

been deleted.

Scan the array inserttime and for each item number
for which inserttime[i]# “absent™ construct an ordered
triple (i keyvalueli)inserttimefi]). Call this set of or-
dered triples remainders.

Use a bucket sort to sort the triples in remainders by
their time-stamps, i.e., the third element of the ordered
triple.

Merge the triples in remainders together with the triples
in deletestack so that they are all ordered by their
time-stamps, i.e., the third element of the ordered
triple.

Scan the combined triples to determine if there exist
two triples which satisfy the following: inserttime[i)<
deletetime’ and (i,keyvalueli])<(i’,k’); where one triple
is from remainders and has the form (i, keyvalue[i),
inserttime(i]) and where the other triple is from deletes-
tack and has the form (i',k’,deletetime’);

If these two triples exist then output “incorrect” and
stop. Otherwise output “correct” and stop.

Theorem 7.1 The algorithm for answer validation of
the priority queue abstract data type is correct.

Proof: Clearly the algorithm for answer validation
slways terminates. We must show that the algorithm
outputs “correct” iff the operations together with ar-
guments and supposed answers are correct. Because of
space limitations we will only give & proof for the more
difficult half of this iff statement. We shall use a proof
by contradiction. Assume that the sequence of opera-
tions, arguments and supposed answers is considered
correct by the algorithm but actually is incorrect. The
use of the array inserttime and the symbol “absent”
assures that no item is deleted when it is absent or in-
serted when it is already present. The use of the array
keyvalue assures that items do not change keyvalue
when they are present in the data type set. There is
only one remaining way in which a sequence can be
incorrect. This occurs when an ordered pair is deleted
by a deletemin operation, however, it does not really
have the smallest key value.

This means, there exist ordered pairs (i, k;) and
(i;,kz) such that (h,kd)(iz,kz) and (i;,k;) is deleted

while (i3,k3) is present in the data type sel. In adg;.
tion, we may specify that (i) k) is the Inrgest ordereq
pair deleted while (i3,ky) is present. Let insy be
time that i; was inserted and let del; be the time thy,
iy was deleted. Let ins; be the time that iy was jp.
serted and let del; be the time that i; was deleted (it
it was deleted). There are two cases.

Case 1: Suppose that (i3 ,k3) is ultimately deleted.
We know that (i;,k;)>(iz,k2) by assumption. del, >del,
since item iy is deleted afic, item iy. ins; <del; since
item i; was present when item i; was deleted.

Consider the situation when item i; is deleted with
8 deletemin operation. The ordered triple for item j,
must appear in deletestack just before the Processing
of the i deletion operation. This follows because the
triple for item i, can only be removed from deletestack
by a larger element and yet (i k) refers to the largest
ordered pair deleted while (iz,k;) was present. Now,
since (iy,k;)>(is,k;) the ordered triple for item i; wil)
remain in deletestack even after deletestack is popped
during the processing of the deletemin operation for
item i;. Suppose the top of deletestack is (is,kj,dely)
after the popping.

It is easy to show that the time-stamps on deletes.
tack are monotonically ordered with the largest time-
stamp at the top. For this reason we know that
dely>del;. We noted ecarlier that dely >ins;. But if
ins; <dely then the algorithm outputs “incorrect™ when
it processes the deletemin operation. This contradicts
our assumption that the sequence of operations, ar-
guments and supposed answers was considered correct
by the algorithm.

Case 2: Suppose the ordered pair (i; kz) is never
deleted. In the second phase of the algorithm the or-
dered triple (i3,kz,ins;) is constructed and is compared
against the ordered triples in deletestack.

The same argument that was used in case 1 above
can be used to show that the test performed in the
second phase of the algorithm would detect a problem

-and cause “incorrect” to be output. This contradicts

246

our assumption that the sequence of operations, argu-
ments and supposed answers was considered correct by
the algo:ithm. Since both cases lead to a contradiction
our proof is complete.

Theorem 7.2 The answer validation algorithm for pri-
ority queue has a time complezity of O(n) for process-
ing a sequence of O(n) operations.

Proof: We first analyze phase one of the algorithm.
Note, there is a constant amount of work done for pro-
cessing each single operation if we exclude the cost of
popping the deletestack. Interestingly, popping the
deletestack can take O(n) time for the processing of
a single operation. Luckily, the total amortized com-
plexity for popping the deletestack while processing a
sequence of O(n) operations is still only O(n). This

il

=

is true l?ecause each item which is inserted and later
deleted is placed on deletestack and is popped at most
once.

We now consider phase two. The cost of array
scanning and constructing the triples is O(n). The
cost of the bucket sort is O(n) and the cost of the
metrge is also O(n). The final test can be implemented
with a simple scan with a complexity of O(n). Hence
the overall complexity is O(n)

We have solved the answer-validation problem for
abstract data structures that support the following set
of operations: member, insert, delete, deletemin, min,
deletemax, and max. The algorithm used to solve this
problem is intricate but efficient. It requires only O(n)
time to process O(n) operations. A detailed descrip-
tion of our solution, however, is beyond the scope of
this version of the paper.

8 Conclusions

The results reported in this paper significantly gen-
eralize the applicability of the certification-trail tech-
nique. In our previously reported work on certification
trails [11], we had to customize each algorithm appli-
cation, but we have now developed trails appropriate
to wide classes of algorithms. These certification trails
are based on common data-structure operations such
as those carried out using balanced binary trees and
heaps. Any algorithm using these sets of operations
can therefore employ the certification trail method to
achieve software fault tolerance. To express the full
generality of these ideas, we have provided construe-
tions of trails for abstract data types such as priority
Queues and union-find structures. These trails are ap-
Plicable to any data-structure implementation of the
abstract data type. These ideas lead naturally to mon-
itors for data-structure operations. We are currently
"Ork'ing on an experimental evaluation of the approach
and initial results are promising.

References

(1) Adel'son-Vel'skii, G. M., and Landis, E. M., “An
algorithm for the organization of information™,
Soviet Math. Dokl., pp. 1259-1262, 3, 1962.

[2) A'nderson, T., and Lee, P., Fault tolerance: prin-
ciples and practices, Prentice-Hall, Englewood

Cliffs, NJ, 1981.

3) Bayer, R., and McCreight, E., “Organization of
ll“iss ordered indexes”, Acta Inform., pp 173-189,
» 1972,

[4) Cormen, T. H., and Leiserson, C. E., and Rivest,
R. L., Introduction ‘o Algorithms McGraw-Hill,
New York, NY, 1990.

(5] Fredman, M. L., and Saks, M. E., “The cell probe
complexity of dynamic data structures,” Proc.
215t ACM Symp. on Theo. Comp. 1989, pp. 109-
122, 2, 1986.

[6) Gabow, H. N., and Tarjan, R. E., “A linear-time
algorithm for a special case of disjoint set union,”
J. of Comp. and Sys. Sci., 30(2), pp. 209-221,
1985.

[7] Guibas, L. J., and Sedgewick, R., “A dichromatic
framework for balanced trees”, Proceedings of the
Nineteenth Annual Symposivm on Foundations
of Computing, pp. 8-21, IEEE Computer Society
Press, 1978.

(8] Johnson, B., Design and analysis of fault tol-
erant digital systems Addison-Wesley, Reading,
MA, 1989.

(9] Randell, B., “System structure for software fault
tolerance,” IEEE Trans. on Software Engineer-
ing, vol. 1, pp. 220-232, June, 1975.

[10] Siewiorek, D., and Swarz, R., The theory and
practice of reliable design, Digital Press, Bedford,
MA, 1982.

[11] Sullivan, G.F., and Masson, G.M., “Using cer-
tification trails to achieve software fault toler-
ance,” Digest of the 1990 Fault Tolerant Com-
puting Symposium, pp. 423-431, IEEE Computer
Society Press, 1990.

(12] Sulliven, G.F., and Masson, G.M., “Certification
trails for data structures,” Department of Com-
puter Science Technical Report JHU 90/17, Johns
Hopkins University, Baltimore, Maryland, 1990.

(13] Tarjan, R. E., “Efficiency of a good but not linear
set union algorithm,” J. ACM, 22(2), pp- 215-225,
1975.

[14]) Tatjan, R. E., “A class of algorithms which re-
quire nonlinear time to maintain disjoint sets,” J.
of Comp. and Sys. Sei., 18(2), pp. 110-127, 1979,

[15) Tatjan, R. E., and Leeuwen, J. van, “Worst-case
analysis of set union algorithms,” J. ACM, 31(2),
pPp- 245-281, 1984.

[16] Taylor, D., “Error Models for robust data struc-
tures,” Dig. 20th Annu. Int. Symp. Fault Tolcrant
Comput., pp. 416-422, 1990 June 26-28.

[17) Williams, J. W. J, “Algorithm 232 (heapsort},”
Commun. of ACM, vol.7, pp. 347-348, 1964.

